annotate src/fftw-3.3.5/rdft/direct-r2c.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 /* direct RDFT solver, using r2c codelets */
cannam@127 23
cannam@127 24 #include "rdft.h"
cannam@127 25
cannam@127 26 typedef struct {
cannam@127 27 solver super;
cannam@127 28 const kr2c_desc *desc;
cannam@127 29 kr2c k;
cannam@127 30 int bufferedp;
cannam@127 31 } S;
cannam@127 32
cannam@127 33 typedef struct {
cannam@127 34 plan_rdft super;
cannam@127 35
cannam@127 36 stride rs, csr, csi;
cannam@127 37 stride brs, bcsr, bcsi;
cannam@127 38 INT n, vl, rs0, ivs, ovs, ioffset, bioffset;
cannam@127 39 kr2c k;
cannam@127 40 const S *slv;
cannam@127 41 } P;
cannam@127 42
cannam@127 43 /*************************************************************
cannam@127 44 Nonbuffered code
cannam@127 45 *************************************************************/
cannam@127 46 static void apply_r2hc(const plan *ego_, R *I, R *O)
cannam@127 47 {
cannam@127 48 const P *ego = (const P *) ego_;
cannam@127 49 ASSERT_ALIGNED_DOUBLE;
cannam@127 50 ego->k(I, I + ego->rs0, O, O + ego->ioffset,
cannam@127 51 ego->rs, ego->csr, ego->csi,
cannam@127 52 ego->vl, ego->ivs, ego->ovs);
cannam@127 53 }
cannam@127 54
cannam@127 55 static void apply_hc2r(const plan *ego_, R *I, R *O)
cannam@127 56 {
cannam@127 57 const P *ego = (const P *) ego_;
cannam@127 58 ASSERT_ALIGNED_DOUBLE;
cannam@127 59 ego->k(O, O + ego->rs0, I, I + ego->ioffset,
cannam@127 60 ego->rs, ego->csr, ego->csi,
cannam@127 61 ego->vl, ego->ivs, ego->ovs);
cannam@127 62 }
cannam@127 63
cannam@127 64 /*************************************************************
cannam@127 65 Buffered code
cannam@127 66 *************************************************************/
cannam@127 67 /* should not be 2^k to avoid associativity conflicts */
cannam@127 68 static INT compute_batchsize(INT radix)
cannam@127 69 {
cannam@127 70 /* round up to multiple of 4 */
cannam@127 71 radix += 3;
cannam@127 72 radix &= -4;
cannam@127 73
cannam@127 74 return (radix + 2);
cannam@127 75 }
cannam@127 76
cannam@127 77 static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz)
cannam@127 78 {
cannam@127 79 X(cpy2d_ci)(I, buf,
cannam@127 80 ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1),
cannam@127 81 batchsz, ego->ivs, 1, 1);
cannam@127 82
cannam@127 83 if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) {
cannam@127 84 /* transform directly to output */
cannam@127 85 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@127 86 O, O + ego->ioffset,
cannam@127 87 ego->brs, ego->csr, ego->csi,
cannam@127 88 batchsz, 1, ego->ovs);
cannam@127 89 } else {
cannam@127 90 /* transform to buffer and copy back */
cannam@127 91 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@127 92 buf, buf + ego->bioffset,
cannam@127 93 ego->brs, ego->bcsr, ego->bcsi,
cannam@127 94 batchsz, 1, 1);
cannam@127 95 X(cpy2d_co)(buf, O,
cannam@127 96 ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1),
cannam@127 97 batchsz, 1, ego->ovs, 1);
cannam@127 98 }
cannam@127 99 }
cannam@127 100
cannam@127 101 static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz)
cannam@127 102 {
cannam@127 103 if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) {
cannam@127 104 /* transform directly from input */
cannam@127 105 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@127 106 I, I + ego->ioffset,
cannam@127 107 ego->brs, ego->csr, ego->csi,
cannam@127 108 batchsz, ego->ivs, 1);
cannam@127 109 } else {
cannam@127 110 /* copy into buffer and transform in place */
cannam@127 111 X(cpy2d_ci)(I, buf,
cannam@127 112 ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1),
cannam@127 113 batchsz, ego->ivs, 1, 1);
cannam@127 114 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
cannam@127 115 buf, buf + ego->bioffset,
cannam@127 116 ego->brs, ego->bcsr, ego->bcsi,
cannam@127 117 batchsz, 1, 1);
cannam@127 118 }
cannam@127 119 X(cpy2d_co)(buf, O,
cannam@127 120 ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0,
cannam@127 121 batchsz, 1, ego->ovs, 1);
cannam@127 122 }
cannam@127 123
cannam@127 124 static void iterate(const P *ego, R *I, R *O,
cannam@127 125 void (*dobatch)(const P *ego, R *I, R *O,
cannam@127 126 R *buf, INT batchsz))
cannam@127 127 {
cannam@127 128 R *buf;
cannam@127 129 INT vl = ego->vl;
cannam@127 130 INT n = ego->n;
cannam@127 131 INT i;
cannam@127 132 INT batchsz = compute_batchsize(n);
cannam@127 133 size_t bufsz = n * batchsz * sizeof(R);
cannam@127 134
cannam@127 135 BUF_ALLOC(R *, buf, bufsz);
cannam@127 136
cannam@127 137 for (i = 0; i < vl - batchsz; i += batchsz) {
cannam@127 138 dobatch(ego, I, O, buf, batchsz);
cannam@127 139 I += batchsz * ego->ivs;
cannam@127 140 O += batchsz * ego->ovs;
cannam@127 141 }
cannam@127 142 dobatch(ego, I, O, buf, vl - i);
cannam@127 143
cannam@127 144 BUF_FREE(buf, bufsz);
cannam@127 145 }
cannam@127 146
cannam@127 147 static void apply_buf_r2hc(const plan *ego_, R *I, R *O)
cannam@127 148 {
cannam@127 149 iterate((const P *) ego_, I, O, dobatch_r2hc);
cannam@127 150 }
cannam@127 151
cannam@127 152 static void apply_buf_hc2r(const plan *ego_, R *I, R *O)
cannam@127 153 {
cannam@127 154 iterate((const P *) ego_, I, O, dobatch_hc2r);
cannam@127 155 }
cannam@127 156
cannam@127 157 static void destroy(plan *ego_)
cannam@127 158 {
cannam@127 159 P *ego = (P *) ego_;
cannam@127 160 X(stride_destroy)(ego->rs);
cannam@127 161 X(stride_destroy)(ego->csr);
cannam@127 162 X(stride_destroy)(ego->csi);
cannam@127 163 X(stride_destroy)(ego->brs);
cannam@127 164 X(stride_destroy)(ego->bcsr);
cannam@127 165 X(stride_destroy)(ego->bcsi);
cannam@127 166 }
cannam@127 167
cannam@127 168 static void print(const plan *ego_, printer *p)
cannam@127 169 {
cannam@127 170 const P *ego = (const P *) ego_;
cannam@127 171 const S *s = ego->slv;
cannam@127 172
cannam@127 173 if (ego->slv->bufferedp)
cannam@127 174 p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")",
cannam@127 175 X(rdft_kind_str)(s->desc->genus->kind),
cannam@127 176 /* hack */ WS(ego->bcsr, 1), ego->n,
cannam@127 177 ego->vl, s->desc->nam);
cannam@127 178
cannam@127 179 else
cannam@127 180 p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")",
cannam@127 181 X(rdft_kind_str)(s->desc->genus->kind), ego->n,
cannam@127 182 ego->vl, s->desc->nam);
cannam@127 183 }
cannam@127 184
cannam@127 185 static INT ioffset(rdft_kind kind, INT sz, INT s)
cannam@127 186 {
cannam@127 187 return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1)));
cannam@127 188 }
cannam@127 189
cannam@127 190 static int applicable(const solver *ego_, const problem *p_)
cannam@127 191 {
cannam@127 192 const S *ego = (const S *) ego_;
cannam@127 193 const kr2c_desc *desc = ego->desc;
cannam@127 194 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 195 INT vl, ivs, ovs;
cannam@127 196
cannam@127 197 return (
cannam@127 198 1
cannam@127 199 && p->sz->rnk == 1
cannam@127 200 && p->vecsz->rnk <= 1
cannam@127 201 && p->sz->dims[0].n == desc->n
cannam@127 202 && p->kind[0] == desc->genus->kind
cannam@127 203
cannam@127 204 /* check strides etc */
cannam@127 205 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@127 206
cannam@127 207 && (0
cannam@127 208 /* can operate out-of-place */
cannam@127 209 || p->I != p->O
cannam@127 210
cannam@127 211 /* computing one transform */
cannam@127 212 || vl == 1
cannam@127 213
cannam@127 214 /* can operate in-place as long as strides are the same */
cannam@127 215 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@127 216 )
cannam@127 217 );
cannam@127 218 }
cannam@127 219
cannam@127 220 static int applicable_buf(const solver *ego_, const problem *p_)
cannam@127 221 {
cannam@127 222 const S *ego = (const S *) ego_;
cannam@127 223 const kr2c_desc *desc = ego->desc;
cannam@127 224 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 225 INT vl, ivs, ovs, batchsz;
cannam@127 226
cannam@127 227 return (
cannam@127 228 1
cannam@127 229 && p->sz->rnk == 1
cannam@127 230 && p->vecsz->rnk <= 1
cannam@127 231 && p->sz->dims[0].n == desc->n
cannam@127 232 && p->kind[0] == desc->genus->kind
cannam@127 233
cannam@127 234 /* check strides etc */
cannam@127 235 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@127 236
cannam@127 237 && (batchsz = compute_batchsize(desc->n), 1)
cannam@127 238
cannam@127 239 && (0
cannam@127 240 /* can operate out-of-place */
cannam@127 241 || p->I != p->O
cannam@127 242
cannam@127 243 /* can operate in-place as long as strides are the same */
cannam@127 244 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@127 245
cannam@127 246 /* can do it if the problem fits in the buffer, no matter
cannam@127 247 what the strides are */
cannam@127 248 || vl <= batchsz
cannam@127 249 )
cannam@127 250 );
cannam@127 251 }
cannam@127 252
cannam@127 253 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 254 {
cannam@127 255 const S *ego = (const S *) ego_;
cannam@127 256 P *pln;
cannam@127 257 const problem_rdft *p;
cannam@127 258 iodim *d;
cannam@127 259 INT rs, cs, b, n;
cannam@127 260
cannam@127 261 static const plan_adt padt = {
cannam@127 262 X(rdft_solve), X(null_awake), print, destroy
cannam@127 263 };
cannam@127 264
cannam@127 265 UNUSED(plnr);
cannam@127 266
cannam@127 267 if (ego->bufferedp) {
cannam@127 268 if (!applicable_buf(ego_, p_))
cannam@127 269 return (plan *)0;
cannam@127 270 } else {
cannam@127 271 if (!applicable(ego_, p_))
cannam@127 272 return (plan *)0;
cannam@127 273 }
cannam@127 274
cannam@127 275 p = (const problem_rdft *) p_;
cannam@127 276
cannam@127 277 if (R2HC_KINDP(p->kind[0])) {
cannam@127 278 rs = p->sz->dims[0].is; cs = p->sz->dims[0].os;
cannam@127 279 pln = MKPLAN_RDFT(P, &padt,
cannam@127 280 ego->bufferedp ? apply_buf_r2hc : apply_r2hc);
cannam@127 281 } else {
cannam@127 282 rs = p->sz->dims[0].os; cs = p->sz->dims[0].is;
cannam@127 283 pln = MKPLAN_RDFT(P, &padt,
cannam@127 284 ego->bufferedp ? apply_buf_hc2r : apply_hc2r);
cannam@127 285 }
cannam@127 286
cannam@127 287 d = p->sz->dims;
cannam@127 288 n = d[0].n;
cannam@127 289
cannam@127 290 pln->k = ego->k;
cannam@127 291 pln->n = n;
cannam@127 292
cannam@127 293 pln->rs0 = rs;
cannam@127 294 pln->rs = X(mkstride)(n, 2 * rs);
cannam@127 295 pln->csr = X(mkstride)(n, cs);
cannam@127 296 pln->csi = X(mkstride)(n, -cs);
cannam@127 297 pln->ioffset = ioffset(p->kind[0], n, cs);
cannam@127 298
cannam@127 299 b = compute_batchsize(n);
cannam@127 300 pln->brs = X(mkstride)(n, 2 * b);
cannam@127 301 pln->bcsr = X(mkstride)(n, b);
cannam@127 302 pln->bcsi = X(mkstride)(n, -b);
cannam@127 303 pln->bioffset = ioffset(p->kind[0], n, b);
cannam@127 304
cannam@127 305 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@127 306
cannam@127 307 pln->slv = ego;
cannam@127 308 X(ops_zero)(&pln->super.super.ops);
cannam@127 309
cannam@127 310 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
cannam@127 311 &ego->desc->ops,
cannam@127 312 &pln->super.super.ops);
cannam@127 313
cannam@127 314 if (ego->bufferedp)
cannam@127 315 pln->super.super.ops.other += 2 * n * pln->vl;
cannam@127 316
cannam@127 317 pln->super.super.could_prune_now_p = !ego->bufferedp;
cannam@127 318
cannam@127 319 return &(pln->super.super);
cannam@127 320 }
cannam@127 321
cannam@127 322 /* constructor */
cannam@127 323 static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp)
cannam@127 324 {
cannam@127 325 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 326 S *slv = MKSOLVER(S, &sadt);
cannam@127 327 slv->k = k;
cannam@127 328 slv->desc = desc;
cannam@127 329 slv->bufferedp = bufferedp;
cannam@127 330 return &(slv->super);
cannam@127 331 }
cannam@127 332
cannam@127 333 solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc)
cannam@127 334 {
cannam@127 335 return mksolver(k, desc, 0);
cannam@127 336 }
cannam@127 337
cannam@127 338 solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc)
cannam@127 339 {
cannam@127 340 return mksolver(k, desc, 1);
cannam@127 341 }