annotate src/fftw-3.3.5/rdft/dht-rader.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 #include "rdft.h"
cannam@127 22
cannam@127 23 /*
cannam@127 24 * Compute DHTs of prime sizes using Rader's trick: turn them
cannam@127 25 * into convolutions of size n - 1, which we then perform via a pair
cannam@127 26 * of FFTs. (We can then do prime real FFTs via rdft-dht.c.)
cannam@127 27 *
cannam@127 28 * Optionally (determined by the "pad" field of the solver), we can
cannam@127 29 * perform the (cyclic) convolution by zero-padding to a size
cannam@127 30 * >= 2*(n-1) - 1. This is advantageous if n-1 has large prime factors.
cannam@127 31 *
cannam@127 32 */
cannam@127 33
cannam@127 34 typedef struct {
cannam@127 35 solver super;
cannam@127 36 int pad;
cannam@127 37 } S;
cannam@127 38
cannam@127 39 typedef struct {
cannam@127 40 plan_rdft super;
cannam@127 41
cannam@127 42 plan *cld1, *cld2;
cannam@127 43 R *omega;
cannam@127 44 INT n, npad, g, ginv;
cannam@127 45 INT is, os;
cannam@127 46 plan *cld_omega;
cannam@127 47 } P;
cannam@127 48
cannam@127 49 static rader_tl *omegas = 0;
cannam@127 50
cannam@127 51 /***************************************************************************/
cannam@127 52
cannam@127 53 /* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution
cannam@127 54 purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC.
cannam@127 55 This requires a few more operations, but allows us to share the same
cannam@127 56 plan/codelets for both Rader children. */
cannam@127 57 #define R2HC_ONLY_CONV 1
cannam@127 58
cannam@127 59 static void apply(const plan *ego_, R *I, R *O)
cannam@127 60 {
cannam@127 61 const P *ego = (const P *) ego_;
cannam@127 62 INT n = ego->n; /* prime */
cannam@127 63 INT npad = ego->npad; /* == n - 1 for unpadded Rader; always even */
cannam@127 64 INT is = ego->is, os;
cannam@127 65 INT k, gpower, g;
cannam@127 66 R *buf, *omega;
cannam@127 67 R r0;
cannam@127 68
cannam@127 69 buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
cannam@127 70
cannam@127 71 /* First, permute the input, storing in buf: */
cannam@127 72 g = ego->g;
cannam@127 73 for (gpower = 1, k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@127 74 buf[k] = I[gpower * is];
cannam@127 75 }
cannam@127 76 /* gpower == g^(n-1) mod n == 1 */;
cannam@127 77
cannam@127 78 A(n - 1 <= npad);
cannam@127 79 for (k = n - 1; k < npad; ++k) /* optionally, zero-pad convolution */
cannam@127 80 buf[k] = 0;
cannam@127 81
cannam@127 82 os = ego->os;
cannam@127 83
cannam@127 84 /* compute RDFT of buf, storing in buf (i.e., in-place): */
cannam@127 85 {
cannam@127 86 plan_rdft *cld = (plan_rdft *) ego->cld1;
cannam@127 87 cld->apply((plan *) cld, buf, buf);
cannam@127 88 }
cannam@127 89
cannam@127 90 /* set output DC component: */
cannam@127 91 O[0] = (r0 = I[0]) + buf[0];
cannam@127 92
cannam@127 93 /* now, multiply by omega: */
cannam@127 94 omega = ego->omega;
cannam@127 95 buf[0] *= omega[0];
cannam@127 96 for (k = 1; k < npad/2; ++k) {
cannam@127 97 E rB, iB, rW, iW, a, b;
cannam@127 98 rW = omega[k];
cannam@127 99 iW = omega[npad - k];
cannam@127 100 rB = buf[k];
cannam@127 101 iB = buf[npad - k];
cannam@127 102 a = rW * rB - iW * iB;
cannam@127 103 b = rW * iB + iW * rB;
cannam@127 104 #if R2HC_ONLY_CONV
cannam@127 105 buf[k] = a + b;
cannam@127 106 buf[npad - k] = a - b;
cannam@127 107 #else
cannam@127 108 buf[k] = a;
cannam@127 109 buf[npad - k] = b;
cannam@127 110 #endif
cannam@127 111 }
cannam@127 112 /* Nyquist component: */
cannam@127 113 A(k + k == npad); /* since npad is even */
cannam@127 114 buf[k] *= omega[k];
cannam@127 115
cannam@127 116 /* this will add input[0] to all of the outputs after the ifft */
cannam@127 117 buf[0] += r0;
cannam@127 118
cannam@127 119 /* inverse FFT: */
cannam@127 120 {
cannam@127 121 plan_rdft *cld = (plan_rdft *) ego->cld2;
cannam@127 122 cld->apply((plan *) cld, buf, buf);
cannam@127 123 }
cannam@127 124
cannam@127 125 /* do inverse permutation to unshuffle the output: */
cannam@127 126 A(gpower == 1);
cannam@127 127 #if R2HC_ONLY_CONV
cannam@127 128 O[os] = buf[0];
cannam@127 129 gpower = g = ego->ginv;
cannam@127 130 A(npad == n - 1 || npad/2 >= n - 1);
cannam@127 131 if (npad == n - 1) {
cannam@127 132 for (k = 1; k < npad/2; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@127 133 O[gpower * os] = buf[k] + buf[npad - k];
cannam@127 134 }
cannam@127 135 O[gpower * os] = buf[k];
cannam@127 136 ++k, gpower = MULMOD(gpower, g, n);
cannam@127 137 for (; k < npad; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@127 138 O[gpower * os] = buf[npad - k] - buf[k];
cannam@127 139 }
cannam@127 140 }
cannam@127 141 else {
cannam@127 142 for (k = 1; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@127 143 O[gpower * os] = buf[k] + buf[npad - k];
cannam@127 144 }
cannam@127 145 }
cannam@127 146 #else
cannam@127 147 g = ego->ginv;
cannam@127 148 for (k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@127 149 O[gpower * os] = buf[k];
cannam@127 150 }
cannam@127 151 #endif
cannam@127 152 A(gpower == 1);
cannam@127 153
cannam@127 154 X(ifree)(buf);
cannam@127 155 }
cannam@127 156
cannam@127 157 static R *mkomega(enum wakefulness wakefulness,
cannam@127 158 plan *p_, INT n, INT npad, INT ginv)
cannam@127 159 {
cannam@127 160 plan_rdft *p = (plan_rdft *) p_;
cannam@127 161 R *omega;
cannam@127 162 INT i, gpower;
cannam@127 163 trigreal scale;
cannam@127 164 triggen *t;
cannam@127 165
cannam@127 166 if ((omega = X(rader_tl_find)(n, npad + 1, ginv, omegas)))
cannam@127 167 return omega;
cannam@127 168
cannam@127 169 omega = (R *)MALLOC(sizeof(R) * npad, TWIDDLES);
cannam@127 170
cannam@127 171 scale = npad; /* normalization for convolution */
cannam@127 172
cannam@127 173 t = X(mktriggen)(wakefulness, n);
cannam@127 174 for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
cannam@127 175 trigreal w[2];
cannam@127 176 t->cexpl(t, gpower, w);
cannam@127 177 omega[i] = (w[0] + w[1]) / scale;
cannam@127 178 }
cannam@127 179 X(triggen_destroy)(t);
cannam@127 180 A(gpower == 1);
cannam@127 181
cannam@127 182 A(npad == n - 1 || npad >= 2*(n - 1) - 1);
cannam@127 183
cannam@127 184 for (; i < npad; ++i)
cannam@127 185 omega[i] = K(0.0);
cannam@127 186 if (npad > n - 1)
cannam@127 187 for (i = 1; i < n-1; ++i)
cannam@127 188 omega[npad - i] = omega[n - 1 - i];
cannam@127 189
cannam@127 190 p->apply(p_, omega, omega);
cannam@127 191
cannam@127 192 X(rader_tl_insert)(n, npad + 1, ginv, omega, &omegas);
cannam@127 193 return omega;
cannam@127 194 }
cannam@127 195
cannam@127 196 static void free_omega(R *omega)
cannam@127 197 {
cannam@127 198 X(rader_tl_delete)(omega, &omegas);
cannam@127 199 }
cannam@127 200
cannam@127 201 /***************************************************************************/
cannam@127 202
cannam@127 203 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 204 {
cannam@127 205 P *ego = (P *) ego_;
cannam@127 206
cannam@127 207 X(plan_awake)(ego->cld1, wakefulness);
cannam@127 208 X(plan_awake)(ego->cld2, wakefulness);
cannam@127 209 X(plan_awake)(ego->cld_omega, wakefulness);
cannam@127 210
cannam@127 211 switch (wakefulness) {
cannam@127 212 case SLEEPY:
cannam@127 213 free_omega(ego->omega);
cannam@127 214 ego->omega = 0;
cannam@127 215 break;
cannam@127 216 default:
cannam@127 217 ego->g = X(find_generator)(ego->n);
cannam@127 218 ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
cannam@127 219 A(MULMOD(ego->g, ego->ginv, ego->n) == 1);
cannam@127 220
cannam@127 221 A(!ego->omega);
cannam@127 222 ego->omega = mkomega(wakefulness,
cannam@127 223 ego->cld_omega,ego->n,ego->npad,ego->ginv);
cannam@127 224 break;
cannam@127 225 }
cannam@127 226 }
cannam@127 227
cannam@127 228 static void destroy(plan *ego_)
cannam@127 229 {
cannam@127 230 P *ego = (P *) ego_;
cannam@127 231 X(plan_destroy_internal)(ego->cld_omega);
cannam@127 232 X(plan_destroy_internal)(ego->cld2);
cannam@127 233 X(plan_destroy_internal)(ego->cld1);
cannam@127 234 }
cannam@127 235
cannam@127 236 static void print(const plan *ego_, printer *p)
cannam@127 237 {
cannam@127 238 const P *ego = (const P *) ego_;
cannam@127 239
cannam@127 240 p->print(p, "(dht-rader-%D/%D%ois=%oos=%(%p%)",
cannam@127 241 ego->n, ego->npad, ego->is, ego->os, ego->cld1);
cannam@127 242 if (ego->cld2 != ego->cld1)
cannam@127 243 p->print(p, "%(%p%)", ego->cld2);
cannam@127 244 if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
cannam@127 245 p->print(p, "%(%p%)", ego->cld_omega);
cannam@127 246 p->putchr(p, ')');
cannam@127 247 }
cannam@127 248
cannam@127 249 static int applicable(const solver *ego, const problem *p_, const planner *plnr)
cannam@127 250 {
cannam@127 251 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 252 UNUSED(ego);
cannam@127 253 return (1
cannam@127 254 && p->sz->rnk == 1
cannam@127 255 && p->vecsz->rnk == 0
cannam@127 256 && p->kind[0] == DHT
cannam@127 257 && X(is_prime)(p->sz->dims[0].n)
cannam@127 258 && p->sz->dims[0].n > 2
cannam@127 259 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
cannam@127 260 /* proclaim the solver SLOW if p-1 is not easily
cannam@127 261 factorizable. Unlike in the complex case where
cannam@127 262 Bluestein can solve the problem, in the DHT case we
cannam@127 263 may have no other choice */
cannam@127 264 && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
cannam@127 265 );
cannam@127 266 }
cannam@127 267
cannam@127 268 static INT choose_transform_size(INT minsz)
cannam@127 269 {
cannam@127 270 static const INT primes[] = { 2, 3, 5, 0 };
cannam@127 271 while (!X(factors_into)(minsz, primes) || minsz % 2)
cannam@127 272 ++minsz;
cannam@127 273 return minsz;
cannam@127 274 }
cannam@127 275
cannam@127 276 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 277 {
cannam@127 278 const S *ego = (const S *) ego_;
cannam@127 279 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 280 P *pln;
cannam@127 281 INT n, npad;
cannam@127 282 INT is, os;
cannam@127 283 plan *cld1 = (plan *) 0;
cannam@127 284 plan *cld2 = (plan *) 0;
cannam@127 285 plan *cld_omega = (plan *) 0;
cannam@127 286 R *buf = (R *) 0;
cannam@127 287 problem *cldp;
cannam@127 288
cannam@127 289 static const plan_adt padt = {
cannam@127 290 X(rdft_solve), awake, print, destroy
cannam@127 291 };
cannam@127 292
cannam@127 293 if (!applicable(ego_, p_, plnr))
cannam@127 294 return (plan *) 0;
cannam@127 295
cannam@127 296 n = p->sz->dims[0].n;
cannam@127 297 is = p->sz->dims[0].is;
cannam@127 298 os = p->sz->dims[0].os;
cannam@127 299
cannam@127 300 if (ego->pad)
cannam@127 301 npad = choose_transform_size(2 * (n - 1) - 1);
cannam@127 302 else
cannam@127 303 npad = n - 1;
cannam@127 304
cannam@127 305 /* initial allocation for the purpose of planning */
cannam@127 306 buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
cannam@127 307
cannam@127 308 cld1 = X(mkplan_f_d)(plnr,
cannam@127 309 X(mkproblem_rdft_1_d)(X(mktensor_1d)(npad, 1, 1),
cannam@127 310 X(mktensor_1d)(1, 0, 0),
cannam@127 311 buf, buf,
cannam@127 312 R2HC),
cannam@127 313 NO_SLOW, 0, 0);
cannam@127 314 if (!cld1) goto nada;
cannam@127 315
cannam@127 316 cldp =
cannam@127 317 X(mkproblem_rdft_1_d)(
cannam@127 318 X(mktensor_1d)(npad, 1, 1),
cannam@127 319 X(mktensor_1d)(1, 0, 0),
cannam@127 320 buf, buf,
cannam@127 321 #if R2HC_ONLY_CONV
cannam@127 322 R2HC
cannam@127 323 #else
cannam@127 324 HC2R
cannam@127 325 #endif
cannam@127 326 );
cannam@127 327 if (!(cld2 = X(mkplan_f_d)(plnr, cldp, NO_SLOW, 0, 0)))
cannam@127 328 goto nada;
cannam@127 329
cannam@127 330 /* plan for omega */
cannam@127 331 cld_omega = X(mkplan_f_d)(plnr,
cannam@127 332 X(mkproblem_rdft_1_d)(
cannam@127 333 X(mktensor_1d)(npad, 1, 1),
cannam@127 334 X(mktensor_1d)(1, 0, 0),
cannam@127 335 buf, buf, R2HC),
cannam@127 336 NO_SLOW, ESTIMATE, 0);
cannam@127 337 if (!cld_omega) goto nada;
cannam@127 338
cannam@127 339 /* deallocate buffers; let awake() or apply() allocate them for real */
cannam@127 340 X(ifree)(buf);
cannam@127 341 buf = 0;
cannam@127 342
cannam@127 343 pln = MKPLAN_RDFT(P, &padt, apply);
cannam@127 344 pln->cld1 = cld1;
cannam@127 345 pln->cld2 = cld2;
cannam@127 346 pln->cld_omega = cld_omega;
cannam@127 347 pln->omega = 0;
cannam@127 348 pln->n = n;
cannam@127 349 pln->npad = npad;
cannam@127 350 pln->is = is;
cannam@127 351 pln->os = os;
cannam@127 352
cannam@127 353 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
cannam@127 354 pln->super.super.ops.other += (npad/2-1)*6 + npad + n + (n-1) * ego->pad;
cannam@127 355 pln->super.super.ops.add += (npad/2-1)*2 + 2 + (n-1) * ego->pad;
cannam@127 356 pln->super.super.ops.mul += (npad/2-1)*4 + 2 + ego->pad;
cannam@127 357 #if R2HC_ONLY_CONV
cannam@127 358 pln->super.super.ops.other += n-2 - ego->pad;
cannam@127 359 pln->super.super.ops.add += (npad/2-1)*2 + (n-2) - ego->pad;
cannam@127 360 #endif
cannam@127 361
cannam@127 362 return &(pln->super.super);
cannam@127 363
cannam@127 364 nada:
cannam@127 365 X(ifree0)(buf);
cannam@127 366 X(plan_destroy_internal)(cld_omega);
cannam@127 367 X(plan_destroy_internal)(cld2);
cannam@127 368 X(plan_destroy_internal)(cld1);
cannam@127 369 return 0;
cannam@127 370 }
cannam@127 371
cannam@127 372 /* constructors */
cannam@127 373
cannam@127 374 static solver *mksolver(int pad)
cannam@127 375 {
cannam@127 376 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 377 S *slv = MKSOLVER(S, &sadt);
cannam@127 378 slv->pad = pad;
cannam@127 379 return &(slv->super);
cannam@127 380 }
cannam@127 381
cannam@127 382 void X(dht_rader_register)(planner *p)
cannam@127 383 {
cannam@127 384 REGISTER_SOLVER(p, mksolver(0));
cannam@127 385 REGISTER_SOLVER(p, mksolver(1));
cannam@127 386 }