annotate src/fftw-3.3.5/rdft/buffered.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 #include "rdft.h"
cannam@127 23
cannam@127 24 typedef struct {
cannam@127 25 solver super;
cannam@127 26 size_t maxnbuf_ndx;
cannam@127 27 } S;
cannam@127 28
cannam@127 29 static const INT maxnbufs[] = { 8, 256 };
cannam@127 30
cannam@127 31 typedef struct {
cannam@127 32 plan_rdft super;
cannam@127 33
cannam@127 34 plan *cld, *cldcpy, *cldrest;
cannam@127 35 INT n, vl, nbuf, bufdist;
cannam@127 36 INT ivs_by_nbuf, ovs_by_nbuf;
cannam@127 37 } P;
cannam@127 38
cannam@127 39 /* transform a vector input with the help of bufs */
cannam@127 40 static void apply(const plan *ego_, R *I, R *O)
cannam@127 41 {
cannam@127 42 const P *ego = (const P *) ego_;
cannam@127 43 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 44 plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
cannam@127 45 plan_rdft *cldrest;
cannam@127 46 INT i, vl = ego->vl, nbuf = ego->nbuf;
cannam@127 47 INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
cannam@127 48 R *bufs;
cannam@127 49
cannam@127 50 bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS);
cannam@127 51
cannam@127 52 for (i = nbuf; i <= vl; i += nbuf) {
cannam@127 53 /* transform to bufs: */
cannam@127 54 cld->apply((plan *) cld, I, bufs);
cannam@127 55 I += ivs_by_nbuf;
cannam@127 56
cannam@127 57 /* copy back */
cannam@127 58 cldcpy->apply((plan *) cldcpy, bufs, O);
cannam@127 59 O += ovs_by_nbuf;
cannam@127 60 }
cannam@127 61
cannam@127 62 X(ifree)(bufs);
cannam@127 63
cannam@127 64 /* Do the remaining transforms, if any: */
cannam@127 65 cldrest = (plan_rdft *) ego->cldrest;
cannam@127 66 cldrest->apply((plan *) cldrest, I, O);
cannam@127 67 }
cannam@127 68
cannam@127 69 /* for hc2r problems, copy the input into buffer, and then
cannam@127 70 transform buffer->output, which allows for destruction of the
cannam@127 71 buffer */
cannam@127 72 static void apply_hc2r(const plan *ego_, R *I, R *O)
cannam@127 73 {
cannam@127 74 const P *ego = (const P *) ego_;
cannam@127 75 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@127 76 plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
cannam@127 77 plan_rdft *cldrest;
cannam@127 78 INT i, vl = ego->vl, nbuf = ego->nbuf;
cannam@127 79 INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
cannam@127 80 R *bufs;
cannam@127 81
cannam@127 82 bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS);
cannam@127 83
cannam@127 84 for (i = nbuf; i <= vl; i += nbuf) {
cannam@127 85 /* copy input into bufs: */
cannam@127 86 cldcpy->apply((plan *) cldcpy, I, bufs);
cannam@127 87 I += ivs_by_nbuf;
cannam@127 88
cannam@127 89 /* transform to output */
cannam@127 90 cld->apply((plan *) cld, bufs, O);
cannam@127 91 O += ovs_by_nbuf;
cannam@127 92 }
cannam@127 93
cannam@127 94 X(ifree)(bufs);
cannam@127 95
cannam@127 96 /* Do the remaining transforms, if any: */
cannam@127 97 cldrest = (plan_rdft *) ego->cldrest;
cannam@127 98 cldrest->apply((plan *) cldrest, I, O);
cannam@127 99 }
cannam@127 100
cannam@127 101
cannam@127 102 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 103 {
cannam@127 104 P *ego = (P *) ego_;
cannam@127 105
cannam@127 106 X(plan_awake)(ego->cld, wakefulness);
cannam@127 107 X(plan_awake)(ego->cldcpy, wakefulness);
cannam@127 108 X(plan_awake)(ego->cldrest, wakefulness);
cannam@127 109 }
cannam@127 110
cannam@127 111 static void destroy(plan *ego_)
cannam@127 112 {
cannam@127 113 P *ego = (P *) ego_;
cannam@127 114 X(plan_destroy_internal)(ego->cldrest);
cannam@127 115 X(plan_destroy_internal)(ego->cldcpy);
cannam@127 116 X(plan_destroy_internal)(ego->cld);
cannam@127 117 }
cannam@127 118
cannam@127 119 static void print(const plan *ego_, printer *p)
cannam@127 120 {
cannam@127 121 const P *ego = (const P *) ego_;
cannam@127 122 p->print(p, "(rdft-buffered-%D%v/%D-%D%(%p%)%(%p%)%(%p%))",
cannam@127 123 ego->n, ego->nbuf,
cannam@127 124 ego->vl, ego->bufdist % ego->n,
cannam@127 125 ego->cld, ego->cldcpy, ego->cldrest);
cannam@127 126 }
cannam@127 127
cannam@127 128 static int applicable0(const S *ego, const problem *p_, const planner *plnr)
cannam@127 129 {
cannam@127 130 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 131 iodim *d = p->sz->dims;
cannam@127 132
cannam@127 133 if (1
cannam@127 134 && p->vecsz->rnk <= 1
cannam@127 135 && p->sz->rnk == 1
cannam@127 136 ) {
cannam@127 137 INT vl, ivs, ovs;
cannam@127 138 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
cannam@127 139
cannam@127 140 if (X(toobig)(d[0].n) && CONSERVE_MEMORYP(plnr))
cannam@127 141 return 0;
cannam@127 142
cannam@127 143 /* if this solver is redundant, in the sense that a solver
cannam@127 144 of lower index generates the same plan, then prune this
cannam@127 145 solver */
cannam@127 146 if (X(nbuf_redundant)(d[0].n, vl,
cannam@127 147 ego->maxnbuf_ndx,
cannam@127 148 maxnbufs, NELEM(maxnbufs)))
cannam@127 149 return 0;
cannam@127 150
cannam@127 151 if (p->I != p->O) {
cannam@127 152 if (p->kind[0] == HC2R) {
cannam@127 153 /* Allow HC2R problems only if the input is to be
cannam@127 154 preserved. This solver sets NO_DESTROY_INPUT,
cannam@127 155 which prevents infinite loops */
cannam@127 156 return (NO_DESTROY_INPUTP(plnr));
cannam@127 157 } else {
cannam@127 158 /*
cannam@127 159 In principle, the buffered transforms might be useful
cannam@127 160 when working out of place. However, in order to
cannam@127 161 prevent infinite loops in the planner, we require
cannam@127 162 that the output stride of the buffered transforms be
cannam@127 163 greater than 1.
cannam@127 164 */
cannam@127 165 return (d[0].os > 1);
cannam@127 166 }
cannam@127 167 }
cannam@127 168
cannam@127 169 /*
cannam@127 170 * If the problem is in place, the input/output strides must
cannam@127 171 * be the same or the whole thing must fit in the buffer.
cannam@127 172 */
cannam@127 173 if (X(tensor_inplace_strides2)(p->sz, p->vecsz))
cannam@127 174 return 1;
cannam@127 175
cannam@127 176 if (/* fits into buffer: */
cannam@127 177 ((p->vecsz->rnk == 0)
cannam@127 178 ||
cannam@127 179 (X(nbuf)(d[0].n, p->vecsz->dims[0].n,
cannam@127 180 maxnbufs[ego->maxnbuf_ndx])
cannam@127 181 == p->vecsz->dims[0].n)))
cannam@127 182 return 1;
cannam@127 183 }
cannam@127 184
cannam@127 185 return 0;
cannam@127 186 }
cannam@127 187
cannam@127 188 static int applicable(const S *ego, const problem *p_, const planner *plnr)
cannam@127 189 {
cannam@127 190 const problem_rdft *p;
cannam@127 191
cannam@127 192 if (NO_BUFFERINGP(plnr)) return 0;
cannam@127 193
cannam@127 194 if (!applicable0(ego, p_, plnr)) return 0;
cannam@127 195
cannam@127 196 p = (const problem_rdft *) p_;
cannam@127 197 if (p->kind[0] == HC2R) {
cannam@127 198 if (NO_UGLYP(plnr)) {
cannam@127 199 /* UGLY if in-place and too big, since the problem
cannam@127 200 could be solved via transpositions */
cannam@127 201 if (p->I == p->O && X(toobig)(p->sz->dims[0].n))
cannam@127 202 return 0;
cannam@127 203 }
cannam@127 204 } else {
cannam@127 205 if (NO_UGLYP(plnr)) {
cannam@127 206 if (p->I != p->O) return 0;
cannam@127 207 if (X(toobig)(p->sz->dims[0].n)) return 0;
cannam@127 208 }
cannam@127 209 }
cannam@127 210 return 1;
cannam@127 211 }
cannam@127 212
cannam@127 213 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 214 {
cannam@127 215 P *pln;
cannam@127 216 const S *ego = (const S *)ego_;
cannam@127 217 plan *cld = (plan *) 0;
cannam@127 218 plan *cldcpy = (plan *) 0;
cannam@127 219 plan *cldrest = (plan *) 0;
cannam@127 220 const problem_rdft *p = (const problem_rdft *) p_;
cannam@127 221 R *bufs = (R *) 0;
cannam@127 222 INT nbuf = 0, bufdist, n, vl;
cannam@127 223 INT ivs, ovs;
cannam@127 224 int hc2rp;
cannam@127 225
cannam@127 226 static const plan_adt padt = {
cannam@127 227 X(rdft_solve), awake, print, destroy
cannam@127 228 };
cannam@127 229
cannam@127 230 if (!applicable(ego, p_, plnr))
cannam@127 231 goto nada;
cannam@127 232
cannam@127 233 n = X(tensor_sz)(p->sz);
cannam@127 234 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
cannam@127 235 hc2rp = (p->kind[0] == HC2R);
cannam@127 236
cannam@127 237 nbuf = X(nbuf)(n, vl, maxnbufs[ego->maxnbuf_ndx]);
cannam@127 238 bufdist = X(bufdist)(n, vl);
cannam@127 239 A(nbuf > 0);
cannam@127 240
cannam@127 241 /* initial allocation for the purpose of planning */
cannam@127 242 bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
cannam@127 243
cannam@127 244 if (hc2rp) {
cannam@127 245 /* allow destruction of buffer */
cannam@127 246 cld = X(mkplan_f_d)(plnr,
cannam@127 247 X(mkproblem_rdft_d)(
cannam@127 248 X(mktensor_1d)(n, 1, p->sz->dims[0].os),
cannam@127 249 X(mktensor_1d)(nbuf, bufdist, ovs),
cannam@127 250 bufs, TAINT(p->O, ovs * nbuf), p->kind),
cannam@127 251 0, 0, NO_DESTROY_INPUT);
cannam@127 252 if (!cld) goto nada;
cannam@127 253
cannam@127 254 /* copying input into buffer buffer is a rank-0 transform: */
cannam@127 255 cldcpy = X(mkplan_d)(plnr,
cannam@127 256 X(mkproblem_rdft_0_d)(
cannam@127 257 X(mktensor_2d)(nbuf, ivs, bufdist,
cannam@127 258 n, p->sz->dims[0].is, 1),
cannam@127 259 TAINT(p->I, ivs * nbuf), bufs));
cannam@127 260 if (!cldcpy) goto nada;
cannam@127 261 } else {
cannam@127 262 /* allow destruction of input if problem is in place */
cannam@127 263 cld = X(mkplan_f_d)(plnr,
cannam@127 264 X(mkproblem_rdft_d)(
cannam@127 265 X(mktensor_1d)(n, p->sz->dims[0].is, 1),
cannam@127 266 X(mktensor_1d)(nbuf, ivs, bufdist),
cannam@127 267 TAINT(p->I, ivs * nbuf), bufs, p->kind),
cannam@127 268 0, 0, (p->I == p->O) ? NO_DESTROY_INPUT : 0);
cannam@127 269 if (!cld) goto nada;
cannam@127 270
cannam@127 271 /* copying back from the buffer is a rank-0 transform: */
cannam@127 272 cldcpy = X(mkplan_d)(plnr,
cannam@127 273 X(mkproblem_rdft_0_d)(
cannam@127 274 X(mktensor_2d)(nbuf, bufdist, ovs,
cannam@127 275 n, 1, p->sz->dims[0].os),
cannam@127 276 bufs, TAINT(p->O, ovs * nbuf)));
cannam@127 277 if (!cldcpy) goto nada;
cannam@127 278 }
cannam@127 279
cannam@127 280 /* deallocate buffers, let apply() allocate them for real */
cannam@127 281 X(ifree)(bufs);
cannam@127 282 bufs = 0;
cannam@127 283
cannam@127 284 /* plan the leftover transforms (cldrest): */
cannam@127 285 {
cannam@127 286 INT id = ivs * (nbuf * (vl / nbuf));
cannam@127 287 INT od = ovs * (nbuf * (vl / nbuf));
cannam@127 288 cldrest = X(mkplan_d)(plnr,
cannam@127 289 X(mkproblem_rdft_d)(
cannam@127 290 X(tensor_copy)(p->sz),
cannam@127 291 X(mktensor_1d)(vl % nbuf, ivs, ovs),
cannam@127 292 p->I + id, p->O + od, p->kind));
cannam@127 293 }
cannam@127 294 if (!cldrest) goto nada;
cannam@127 295
cannam@127 296 pln = MKPLAN_RDFT(P, &padt, hc2rp ? apply_hc2r : apply);
cannam@127 297 pln->cld = cld;
cannam@127 298 pln->cldcpy = cldcpy;
cannam@127 299 pln->cldrest = cldrest;
cannam@127 300 pln->n = n;
cannam@127 301 pln->vl = vl;
cannam@127 302 pln->ivs_by_nbuf = ivs * nbuf;
cannam@127 303 pln->ovs_by_nbuf = ovs * nbuf;
cannam@127 304
cannam@127 305 pln->nbuf = nbuf;
cannam@127 306 pln->bufdist = bufdist;
cannam@127 307
cannam@127 308 {
cannam@127 309 opcnt t;
cannam@127 310 X(ops_add)(&cld->ops, &cldcpy->ops, &t);
cannam@127 311 X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops);
cannam@127 312 }
cannam@127 313
cannam@127 314 return &(pln->super.super);
cannam@127 315
cannam@127 316 nada:
cannam@127 317 X(ifree0)(bufs);
cannam@127 318 X(plan_destroy_internal)(cldrest);
cannam@127 319 X(plan_destroy_internal)(cldcpy);
cannam@127 320 X(plan_destroy_internal)(cld);
cannam@127 321 return (plan *) 0;
cannam@127 322 }
cannam@127 323
cannam@127 324 static solver *mksolver(size_t maxnbuf_ndx)
cannam@127 325 {
cannam@127 326 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@127 327 S *slv = MKSOLVER(S, &sadt);
cannam@127 328 slv->maxnbuf_ndx = maxnbuf_ndx;
cannam@127 329 return &(slv->super);
cannam@127 330 }
cannam@127 331
cannam@127 332 void X(rdft_buffered_register)(planner *p)
cannam@127 333 {
cannam@127 334 size_t i;
cannam@127 335 for (i = 0; i < NELEM(maxnbufs); ++i)
cannam@127 336 REGISTER_SOLVER(p, mksolver(i));
cannam@127 337 }