annotate src/fftw-3.3.5/mpi/transpose-recurse.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* Recursive "radix-r" distributed transpose, which breaks a transpose
cannam@127 22 over p processes into p/r transposes over r processes plus r
cannam@127 23 transposes over p/r processes. If performed recursively, this
cannam@127 24 produces a total of O(p log p) messages vs. O(p^2) messages for a
cannam@127 25 direct approach.
cannam@127 26
cannam@127 27 However, this is not necessarily an improvement. The total size of
cannam@127 28 all the messages is actually increased from O(N) to O(N log p)
cannam@127 29 where N is the total data size. Also, the amount of local data
cannam@127 30 rearrangement is increased. So, it's not clear, a priori, what the
cannam@127 31 best algorithm will be, and we'll leave it to the planner. (In
cannam@127 32 theory and practice, it looks like this becomes advantageous for
cannam@127 33 large p, in the limit where the message sizes are small and
cannam@127 34 latency-dominated.)
cannam@127 35 */
cannam@127 36
cannam@127 37 #include "mpi-transpose.h"
cannam@127 38 #include <string.h>
cannam@127 39
cannam@127 40 typedef struct {
cannam@127 41 solver super;
cannam@127 42 int (*radix)(int np);
cannam@127 43 const char *nam;
cannam@127 44 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
cannam@127 45 } S;
cannam@127 46
cannam@127 47 typedef struct {
cannam@127 48 plan_mpi_transpose super;
cannam@127 49
cannam@127 50 plan *cld1, *cldtr, *cldtm;
cannam@127 51 int preserve_input;
cannam@127 52
cannam@127 53 int r; /* "radix" */
cannam@127 54 const char *nam;
cannam@127 55 } P;
cannam@127 56
cannam@127 57 static void apply(const plan *ego_, R *I, R *O)
cannam@127 58 {
cannam@127 59 const P *ego = (const P *) ego_;
cannam@127 60 plan_rdft *cld1, *cldtr, *cldtm;
cannam@127 61
cannam@127 62 cld1 = (plan_rdft *) ego->cld1;
cannam@127 63 if (cld1) cld1->apply((plan *) cld1, I, O);
cannam@127 64
cannam@127 65 if (ego->preserve_input) I = O;
cannam@127 66
cannam@127 67 cldtr = (plan_rdft *) ego->cldtr;
cannam@127 68 if (cldtr) cldtr->apply((plan *) cldtr, O, I);
cannam@127 69
cannam@127 70 cldtm = (plan_rdft *) ego->cldtm;
cannam@127 71 if (cldtm) cldtm->apply((plan *) cldtm, I, O);
cannam@127 72 }
cannam@127 73
cannam@127 74 static int radix_sqrt(int np)
cannam@127 75 {
cannam@127 76 int r;
cannam@127 77 for (r = (int) (X(isqrt)(np)); np % r != 0; ++r)
cannam@127 78 ;
cannam@127 79 return r;
cannam@127 80 }
cannam@127 81
cannam@127 82 static int radix_first(int np)
cannam@127 83 {
cannam@127 84 int r = (int) (X(first_divisor)(np));
cannam@127 85 return (r >= (int) (X(isqrt)(np)) ? 0 : r);
cannam@127 86 }
cannam@127 87
cannam@127 88 /* the local allocated space on process pe required for the given transpose
cannam@127 89 dimensions and block sizes */
cannam@127 90 static INT transpose_space(INT nx, INT ny, INT block, INT tblock, int pe)
cannam@127 91 {
cannam@127 92 return X(imax)(XM(block)(nx, block, pe) * ny,
cannam@127 93 nx * XM(block)(ny, tblock, pe));
cannam@127 94 }
cannam@127 95
cannam@127 96 /* check whether the recursive transposes fit within the space
cannam@127 97 that must have been allocated on each process for this transpose;
cannam@127 98 this must be modified if the subdivision in mkplan is changed! */
cannam@127 99 static int enough_space(INT nx, INT ny, INT block, INT tblock,
cannam@127 100 int r, int n_pes)
cannam@127 101 {
cannam@127 102 int pe;
cannam@127 103 int m = n_pes / r;
cannam@127 104 for (pe = 0; pe < n_pes; ++pe) {
cannam@127 105 INT space = transpose_space(nx, ny, block, tblock, pe);
cannam@127 106 INT b1 = XM(block)(nx, r * block, pe / r);
cannam@127 107 INT b2 = XM(block)(ny, m * tblock, pe % r);
cannam@127 108 if (transpose_space(b1, ny, block, m*tblock, pe % r) > space
cannam@127 109 || transpose_space(nx, b2, r*block, tblock, pe / r) > space)
cannam@127 110 return 0;
cannam@127 111 }
cannam@127 112 return 1;
cannam@127 113 }
cannam@127 114
cannam@127 115 /* In theory, transpose-recurse becomes advantageous for message sizes
cannam@127 116 below some minimum, assuming that the time is dominated by
cannam@127 117 communications. In practice, we want to constrain the minimum
cannam@127 118 message size for transpose-recurse to keep the planning time down.
cannam@127 119 I've set this conservatively according to some simple experiments
cannam@127 120 on a Cray XT3 where the crossover message size was 128, although on
cannam@127 121 a larger-latency machine the crossover will be larger. */
cannam@127 122 #define SMALL_MESSAGE 2048
cannam@127 123
cannam@127 124 static int applicable(const S *ego, const problem *p_,
cannam@127 125 const planner *plnr, int *r)
cannam@127 126 {
cannam@127 127 const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
cannam@127 128 int n_pes;
cannam@127 129 MPI_Comm_size(p->comm, &n_pes);
cannam@127 130 return (1
cannam@127 131 && p->tblock * n_pes == p->ny
cannam@127 132 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
cannam@127 133 && p->I != p->O))
cannam@127 134 && (*r = ego->radix(n_pes)) && *r < n_pes && *r > 1
cannam@127 135 && enough_space(p->nx, p->ny, p->block, p->tblock, *r, n_pes)
cannam@127 136 && (!CONSERVE_MEMORYP(plnr) || *r > 8
cannam@127 137 || !X(toobig)((p->nx * (p->ny / n_pes) * p->vn) / *r))
cannam@127 138 && (!NO_SLOWP(plnr) ||
cannam@127 139 (p->nx * (p->ny / n_pes) * p->vn) / n_pes <= SMALL_MESSAGE)
cannam@127 140 && ONLY_TRANSPOSEDP(p->flags)
cannam@127 141 );
cannam@127 142 }
cannam@127 143
cannam@127 144 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 145 {
cannam@127 146 P *ego = (P *) ego_;
cannam@127 147 X(plan_awake)(ego->cld1, wakefulness);
cannam@127 148 X(plan_awake)(ego->cldtr, wakefulness);
cannam@127 149 X(plan_awake)(ego->cldtm, wakefulness);
cannam@127 150 }
cannam@127 151
cannam@127 152 static void destroy(plan *ego_)
cannam@127 153 {
cannam@127 154 P *ego = (P *) ego_;
cannam@127 155 X(plan_destroy_internal)(ego->cldtm);
cannam@127 156 X(plan_destroy_internal)(ego->cldtr);
cannam@127 157 X(plan_destroy_internal)(ego->cld1);
cannam@127 158 }
cannam@127 159
cannam@127 160 static void print(const plan *ego_, printer *p)
cannam@127 161 {
cannam@127 162 const P *ego = (const P *) ego_;
cannam@127 163 p->print(p, "(mpi-transpose-recurse/%s/%d%s%(%p%)%(%p%)%(%p%))",
cannam@127 164 ego->nam, ego->r, ego->preserve_input==2 ?"/p":"",
cannam@127 165 ego->cld1, ego->cldtr, ego->cldtm);
cannam@127 166 }
cannam@127 167
cannam@127 168 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 169 {
cannam@127 170 const S *ego = (const S *) ego_;
cannam@127 171 const problem_mpi_transpose *p;
cannam@127 172 P *pln;
cannam@127 173 plan *cld1 = 0, *cldtr = 0, *cldtm = 0;
cannam@127 174 R *I, *O;
cannam@127 175 int me, np, r, m;
cannam@127 176 INT b;
cannam@127 177 MPI_Comm comm2;
cannam@127 178 static const plan_adt padt = {
cannam@127 179 XM(transpose_solve), awake, print, destroy
cannam@127 180 };
cannam@127 181
cannam@127 182 UNUSED(ego);
cannam@127 183
cannam@127 184 if (!applicable(ego, p_, plnr, &r))
cannam@127 185 return (plan *) 0;
cannam@127 186
cannam@127 187 p = (const problem_mpi_transpose *) p_;
cannam@127 188
cannam@127 189 MPI_Comm_size(p->comm, &np);
cannam@127 190 MPI_Comm_rank(p->comm, &me);
cannam@127 191 m = np / r;
cannam@127 192 A(r * m == np);
cannam@127 193
cannam@127 194 I = p->I; O = p->O;
cannam@127 195
cannam@127 196 b = XM(block)(p->nx, p->block, me);
cannam@127 197 A(p->tblock * np == p->ny); /* this is currently required for cld1 */
cannam@127 198 if (p->flags & TRANSPOSED_IN) {
cannam@127 199 /* m x r x (bt x b x vn) -> r x m x (bt x b x vn) */
cannam@127 200 INT vn = p->vn * b * p->tblock;
cannam@127 201 cld1 = X(mkplan_f_d)(plnr,
cannam@127 202 X(mkproblem_rdft_0_d)(X(mktensor_3d)
cannam@127 203 (m, r*vn, vn,
cannam@127 204 r, vn, m*vn,
cannam@127 205 vn, 1, 1),
cannam@127 206 I, O),
cannam@127 207 0, 0, NO_SLOW);
cannam@127 208 }
cannam@127 209 else if (I != O) { /* combine cld1 with TRANSPOSED_IN permutation */
cannam@127 210 /* b x m x r x bt x vn -> r x m x bt x b x vn */
cannam@127 211 INT vn = p->vn;
cannam@127 212 INT bt = p->tblock;
cannam@127 213 cld1 = X(mkplan_f_d)(plnr,
cannam@127 214 X(mkproblem_rdft_0_d)(X(mktensor_5d)
cannam@127 215 (b, m*r*bt*vn, vn,
cannam@127 216 m, r*bt*vn, bt*b*vn,
cannam@127 217 r, bt*vn, m*bt*b*vn,
cannam@127 218 bt, vn, b*vn,
cannam@127 219 vn, 1, 1),
cannam@127 220 I, O),
cannam@127 221 0, 0, NO_SLOW);
cannam@127 222 }
cannam@127 223 else { /* TRANSPOSED_IN permutation must be separate for in-place */
cannam@127 224 /* b x (m x r) x bt x vn -> b x (r x m) x bt x vn */
cannam@127 225 INT vn = p->vn * p->tblock;
cannam@127 226 cld1 = X(mkplan_f_d)(plnr,
cannam@127 227 X(mkproblem_rdft_0_d)(X(mktensor_4d)
cannam@127 228 (m, r*vn, vn,
cannam@127 229 r, vn, m*vn,
cannam@127 230 vn, 1, 1,
cannam@127 231 b, np*vn, np*vn),
cannam@127 232 I, O),
cannam@127 233 0, 0, NO_SLOW);
cannam@127 234 }
cannam@127 235 if (XM(any_true)(!cld1, p->comm)) goto nada;
cannam@127 236
cannam@127 237 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O;
cannam@127 238
cannam@127 239 b = XM(block)(p->nx, r * p->block, me / r);
cannam@127 240 MPI_Comm_split(p->comm, me / r, me, &comm2);
cannam@127 241 if (b)
cannam@127 242 cldtr = X(mkplan_d)(plnr, XM(mkproblem_transpose)
cannam@127 243 (b, p->ny, p->vn,
cannam@127 244 O, I, p->block, m * p->tblock, comm2,
cannam@127 245 p->I != p->O
cannam@127 246 ? TRANSPOSED_IN : (p->flags & TRANSPOSED_IN)));
cannam@127 247 MPI_Comm_free(&comm2);
cannam@127 248 if (XM(any_true)(b && !cldtr, p->comm)) goto nada;
cannam@127 249
cannam@127 250 b = XM(block)(p->ny, m * p->tblock, me % r);
cannam@127 251 MPI_Comm_split(p->comm, me % r, me, &comm2);
cannam@127 252 if (b)
cannam@127 253 cldtm = X(mkplan_d)(plnr, XM(mkproblem_transpose)
cannam@127 254 (p->nx, b, p->vn,
cannam@127 255 I, O, r * p->block, p->tblock, comm2,
cannam@127 256 TRANSPOSED_IN | (p->flags & TRANSPOSED_OUT)));
cannam@127 257 MPI_Comm_free(&comm2);
cannam@127 258 if (XM(any_true)(b && !cldtm, p->comm)) goto nada;
cannam@127 259
cannam@127 260 pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);
cannam@127 261
cannam@127 262 pln->cld1 = cld1;
cannam@127 263 pln->cldtr = cldtr;
cannam@127 264 pln->cldtm = cldtm;
cannam@127 265 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
cannam@127 266 pln->r = r;
cannam@127 267 pln->nam = ego->nam;
cannam@127 268
cannam@127 269 pln->super.super.ops = cld1->ops;
cannam@127 270 if (cldtr) X(ops_add2)(&cldtr->ops, &pln->super.super.ops);
cannam@127 271 if (cldtm) X(ops_add2)(&cldtm->ops, &pln->super.super.ops);
cannam@127 272
cannam@127 273 return &(pln->super.super);
cannam@127 274
cannam@127 275 nada:
cannam@127 276 X(plan_destroy_internal)(cldtm);
cannam@127 277 X(plan_destroy_internal)(cldtr);
cannam@127 278 X(plan_destroy_internal)(cld1);
cannam@127 279 return (plan *) 0;
cannam@127 280 }
cannam@127 281
cannam@127 282 static solver *mksolver(int preserve_input,
cannam@127 283 int (*radix)(int np), const char *nam)
cannam@127 284 {
cannam@127 285 static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
cannam@127 286 S *slv = MKSOLVER(S, &sadt);
cannam@127 287 slv->preserve_input = preserve_input;
cannam@127 288 slv->radix = radix;
cannam@127 289 slv->nam = nam;
cannam@127 290 return &(slv->super);
cannam@127 291 }
cannam@127 292
cannam@127 293 void XM(transpose_recurse_register)(planner *p)
cannam@127 294 {
cannam@127 295 int preserve_input;
cannam@127 296 for (preserve_input = 0; preserve_input <= 1; ++preserve_input) {
cannam@127 297 REGISTER_SOLVER(p, mksolver(preserve_input, radix_sqrt, "sqrt"));
cannam@127 298 REGISTER_SOLVER(p, mksolver(preserve_input, radix_first, "first"));
cannam@127 299 }
cannam@127 300 }