cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21 /* Complex RDFT2s of rank >= 2, for the case where we are distributed
|
cannam@127
|
22 across the first dimension only, and the output is not transposed. */
|
cannam@127
|
23
|
cannam@127
|
24 #include "mpi-dft.h"
|
cannam@127
|
25 #include "mpi-rdft2.h"
|
cannam@127
|
26 #include "rdft.h"
|
cannam@127
|
27
|
cannam@127
|
28 typedef struct {
|
cannam@127
|
29 solver super;
|
cannam@127
|
30 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
|
cannam@127
|
31 } S;
|
cannam@127
|
32
|
cannam@127
|
33 typedef struct {
|
cannam@127
|
34 plan_mpi_rdft2 super;
|
cannam@127
|
35
|
cannam@127
|
36 plan *cld1, *cld2;
|
cannam@127
|
37 INT vn;
|
cannam@127
|
38 int preserve_input;
|
cannam@127
|
39 } P;
|
cannam@127
|
40
|
cannam@127
|
41 static void apply_r2c(const plan *ego_, R *I, R *O)
|
cannam@127
|
42 {
|
cannam@127
|
43 const P *ego = (const P *) ego_;
|
cannam@127
|
44 plan_rdft2 *cld1;
|
cannam@127
|
45 plan_rdft *cld2;
|
cannam@127
|
46
|
cannam@127
|
47 /* RDFT2 local dimensions */
|
cannam@127
|
48 cld1 = (plan_rdft2 *) ego->cld1;
|
cannam@127
|
49 if (ego->preserve_input) {
|
cannam@127
|
50 cld1->apply(ego->cld1, I, I+ego->vn, O, O+1);
|
cannam@127
|
51 I = O;
|
cannam@127
|
52 }
|
cannam@127
|
53 else
|
cannam@127
|
54 cld1->apply(ego->cld1, I, I+ego->vn, I, I+1);
|
cannam@127
|
55
|
cannam@127
|
56 /* DFT non-local dimension (via dft-rank1-bigvec, usually): */
|
cannam@127
|
57 cld2 = (plan_rdft *) ego->cld2;
|
cannam@127
|
58 cld2->apply(ego->cld2, I, O);
|
cannam@127
|
59 }
|
cannam@127
|
60
|
cannam@127
|
61 static void apply_c2r(const plan *ego_, R *I, R *O)
|
cannam@127
|
62 {
|
cannam@127
|
63 const P *ego = (const P *) ego_;
|
cannam@127
|
64 plan_rdft2 *cld1;
|
cannam@127
|
65 plan_rdft *cld2;
|
cannam@127
|
66
|
cannam@127
|
67 /* DFT non-local dimension (via dft-rank1-bigvec, usually): */
|
cannam@127
|
68 cld2 = (plan_rdft *) ego->cld2;
|
cannam@127
|
69 cld2->apply(ego->cld2, I, O);
|
cannam@127
|
70
|
cannam@127
|
71 /* RDFT2 local dimensions */
|
cannam@127
|
72 cld1 = (plan_rdft2 *) ego->cld1;
|
cannam@127
|
73 cld1->apply(ego->cld1, O, O+ego->vn, O, O+1);
|
cannam@127
|
74
|
cannam@127
|
75 }
|
cannam@127
|
76
|
cannam@127
|
77 static int applicable(const S *ego, const problem *p_,
|
cannam@127
|
78 const planner *plnr)
|
cannam@127
|
79 {
|
cannam@127
|
80 const problem_mpi_rdft2 *p = (const problem_mpi_rdft2 *) p_;
|
cannam@127
|
81 return (1
|
cannam@127
|
82 && p->sz->rnk > 1
|
cannam@127
|
83 && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */
|
cannam@127
|
84 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
|
cannam@127
|
85 && p->I != p->O
|
cannam@127
|
86 && p->kind == R2HC))
|
cannam@127
|
87 && XM(is_local_after)(1, p->sz, IB)
|
cannam@127
|
88 && XM(is_local_after)(1, p->sz, OB)
|
cannam@127
|
89 && (!NO_SLOWP(plnr) /* slow if rdft2-serial is applicable */
|
cannam@127
|
90 || !XM(rdft2_serial_applicable)(p))
|
cannam@127
|
91 );
|
cannam@127
|
92 }
|
cannam@127
|
93
|
cannam@127
|
94 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@127
|
95 {
|
cannam@127
|
96 P *ego = (P *) ego_;
|
cannam@127
|
97 X(plan_awake)(ego->cld1, wakefulness);
|
cannam@127
|
98 X(plan_awake)(ego->cld2, wakefulness);
|
cannam@127
|
99 }
|
cannam@127
|
100
|
cannam@127
|
101 static void destroy(plan *ego_)
|
cannam@127
|
102 {
|
cannam@127
|
103 P *ego = (P *) ego_;
|
cannam@127
|
104 X(plan_destroy_internal)(ego->cld2);
|
cannam@127
|
105 X(plan_destroy_internal)(ego->cld1);
|
cannam@127
|
106 }
|
cannam@127
|
107
|
cannam@127
|
108 static void print(const plan *ego_, printer *p)
|
cannam@127
|
109 {
|
cannam@127
|
110 const P *ego = (const P *) ego_;
|
cannam@127
|
111 p->print(p, "(mpi-rdft2-rank-geq2%s%(%p%)%(%p%))",
|
cannam@127
|
112 ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cld2);
|
cannam@127
|
113 }
|
cannam@127
|
114
|
cannam@127
|
115 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
cannam@127
|
116 {
|
cannam@127
|
117 const S *ego = (const S *) ego_;
|
cannam@127
|
118 const problem_mpi_rdft2 *p;
|
cannam@127
|
119 P *pln;
|
cannam@127
|
120 plan *cld1 = 0, *cld2 = 0;
|
cannam@127
|
121 R *r0, *r1, *cr, *ci, *I, *O;
|
cannam@127
|
122 tensor *sz;
|
cannam@127
|
123 dtensor *sz2;
|
cannam@127
|
124 int i, my_pe, n_pes;
|
cannam@127
|
125 INT nrest;
|
cannam@127
|
126 static const plan_adt padt = {
|
cannam@127
|
127 XM(rdft2_solve), awake, print, destroy
|
cannam@127
|
128 };
|
cannam@127
|
129
|
cannam@127
|
130 UNUSED(ego);
|
cannam@127
|
131
|
cannam@127
|
132 if (!applicable(ego, p_, plnr))
|
cannam@127
|
133 return (plan *) 0;
|
cannam@127
|
134
|
cannam@127
|
135 p = (const problem_mpi_rdft2 *) p_;
|
cannam@127
|
136
|
cannam@127
|
137 I = p->I; O = p->O;
|
cannam@127
|
138 if (p->kind == R2HC) {
|
cannam@127
|
139 r1 = (r0 = p->I) + p->vn;
|
cannam@127
|
140 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
|
cannam@127
|
141 ci = (cr = p->O) + 1;
|
cannam@127
|
142 I = O;
|
cannam@127
|
143 }
|
cannam@127
|
144 else
|
cannam@127
|
145 ci = (cr = p->I) + 1;
|
cannam@127
|
146 }
|
cannam@127
|
147 else {
|
cannam@127
|
148 r1 = (r0 = p->O) + p->vn;
|
cannam@127
|
149 ci = (cr = p->O) + 1;
|
cannam@127
|
150 }
|
cannam@127
|
151
|
cannam@127
|
152 MPI_Comm_rank(p->comm, &my_pe);
|
cannam@127
|
153 MPI_Comm_size(p->comm, &n_pes);
|
cannam@127
|
154
|
cannam@127
|
155 sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
|
cannam@127
|
156 i = p->sz->rnk - 2; A(i >= 0);
|
cannam@127
|
157 sz->dims[i].is = sz->dims[i].os = 2 * p->vn;
|
cannam@127
|
158 sz->dims[i].n = p->sz->dims[i+1].n / 2 + 1;
|
cannam@127
|
159 for (--i; i >= 0; --i) {
|
cannam@127
|
160 sz->dims[i].n = p->sz->dims[i+1].n;
|
cannam@127
|
161 sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
|
cannam@127
|
162 }
|
cannam@127
|
163 nrest = X(tensor_sz)(sz);
|
cannam@127
|
164 {
|
cannam@127
|
165 INT ivs = 1 + (p->kind == HC2R), ovs = 1 + (p->kind == R2HC);
|
cannam@127
|
166 INT is = sz->dims[0].n * sz->dims[0].is;
|
cannam@127
|
167 INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe);
|
cannam@127
|
168 sz->dims[p->sz->rnk - 2].n = p->sz->dims[p->sz->rnk - 1].n;
|
cannam@127
|
169 cld1 = X(mkplan_d)(plnr,
|
cannam@127
|
170 X(mkproblem_rdft2_d)(sz,
|
cannam@127
|
171 X(mktensor_2d)(b, is, is,
|
cannam@127
|
172 p->vn,ivs,ovs),
|
cannam@127
|
173 r0, r1, cr, ci, p->kind));
|
cannam@127
|
174 if (XM(any_true)(!cld1, p->comm)) goto nada;
|
cannam@127
|
175 }
|
cannam@127
|
176
|
cannam@127
|
177 sz2 = XM(mkdtensor)(1); /* tensor for first (distributed) dimension */
|
cannam@127
|
178 sz2->dims[0] = p->sz->dims[0];
|
cannam@127
|
179 cld2 = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz2, nrest * p->vn,
|
cannam@127
|
180 I, O, p->comm,
|
cannam@127
|
181 p->kind == R2HC ?
|
cannam@127
|
182 FFT_SIGN : -FFT_SIGN,
|
cannam@127
|
183 RANK1_BIGVEC_ONLY));
|
cannam@127
|
184 if (XM(any_true)(!cld2, p->comm)) goto nada;
|
cannam@127
|
185
|
cannam@127
|
186 pln = MKPLAN_MPI_RDFT2(P, &padt, p->kind == R2HC ? apply_r2c : apply_c2r);
|
cannam@127
|
187 pln->cld1 = cld1;
|
cannam@127
|
188 pln->cld2 = cld2;
|
cannam@127
|
189 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
|
cannam@127
|
190 pln->vn = p->vn;
|
cannam@127
|
191
|
cannam@127
|
192 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
|
cannam@127
|
193
|
cannam@127
|
194 return &(pln->super.super);
|
cannam@127
|
195
|
cannam@127
|
196 nada:
|
cannam@127
|
197 X(plan_destroy_internal)(cld2);
|
cannam@127
|
198 X(plan_destroy_internal)(cld1);
|
cannam@127
|
199 return (plan *) 0;
|
cannam@127
|
200 }
|
cannam@127
|
201
|
cannam@127
|
202 static solver *mksolver(int preserve_input)
|
cannam@127
|
203 {
|
cannam@127
|
204 static const solver_adt sadt = { PROBLEM_MPI_RDFT2, mkplan, 0 };
|
cannam@127
|
205 S *slv = MKSOLVER(S, &sadt);
|
cannam@127
|
206 slv->preserve_input = preserve_input;
|
cannam@127
|
207 return &(slv->super);
|
cannam@127
|
208 }
|
cannam@127
|
209
|
cannam@127
|
210 void XM(rdft2_rank_geq2_register)(planner *p)
|
cannam@127
|
211 {
|
cannam@127
|
212 int preserve_input;
|
cannam@127
|
213 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
|
cannam@127
|
214 REGISTER_SOLVER(p, mksolver(preserve_input));
|
cannam@127
|
215 }
|