annotate src/fftw-3.3.5/mpi/rdft-rank-geq2.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* Complex RDFTs of rank >= 2, for the case where we are distributed
cannam@127 22 across the first dimension only, and the output is not transposed. */
cannam@127 23
cannam@127 24 #include "mpi-rdft.h"
cannam@127 25
cannam@127 26 typedef struct {
cannam@127 27 solver super;
cannam@127 28 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
cannam@127 29 } S;
cannam@127 30
cannam@127 31 typedef struct {
cannam@127 32 plan_mpi_rdft super;
cannam@127 33
cannam@127 34 plan *cld1, *cld2;
cannam@127 35 int preserve_input;
cannam@127 36 } P;
cannam@127 37
cannam@127 38 static void apply(const plan *ego_, R *I, R *O)
cannam@127 39 {
cannam@127 40 const P *ego = (const P *) ego_;
cannam@127 41 plan_rdft *cld1, *cld2;
cannam@127 42
cannam@127 43 /* RDFT local dimensions */
cannam@127 44 cld1 = (plan_rdft *) ego->cld1;
cannam@127 45 if (ego->preserve_input) {
cannam@127 46 cld1->apply(ego->cld1, I, O);
cannam@127 47 I = O;
cannam@127 48 }
cannam@127 49 else
cannam@127 50 cld1->apply(ego->cld1, I, I);
cannam@127 51
cannam@127 52 /* RDFT non-local dimension (via rdft-rank1-bigvec, usually): */
cannam@127 53 cld2 = (plan_rdft *) ego->cld2;
cannam@127 54 cld2->apply(ego->cld2, I, O);
cannam@127 55 }
cannam@127 56
cannam@127 57 static int applicable(const S *ego, const problem *p_,
cannam@127 58 const planner *plnr)
cannam@127 59 {
cannam@127 60 const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_;
cannam@127 61 return (1
cannam@127 62 && p->sz->rnk > 1
cannam@127 63 && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */
cannam@127 64 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
cannam@127 65 && p->I != p->O))
cannam@127 66 && XM(is_local_after)(1, p->sz, IB)
cannam@127 67 && XM(is_local_after)(1, p->sz, OB)
cannam@127 68 && (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */
cannam@127 69 || !XM(rdft_serial_applicable)(p))
cannam@127 70 );
cannam@127 71 }
cannam@127 72
cannam@127 73 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 74 {
cannam@127 75 P *ego = (P *) ego_;
cannam@127 76 X(plan_awake)(ego->cld1, wakefulness);
cannam@127 77 X(plan_awake)(ego->cld2, wakefulness);
cannam@127 78 }
cannam@127 79
cannam@127 80 static void destroy(plan *ego_)
cannam@127 81 {
cannam@127 82 P *ego = (P *) ego_;
cannam@127 83 X(plan_destroy_internal)(ego->cld2);
cannam@127 84 X(plan_destroy_internal)(ego->cld1);
cannam@127 85 }
cannam@127 86
cannam@127 87 static void print(const plan *ego_, printer *p)
cannam@127 88 {
cannam@127 89 const P *ego = (const P *) ego_;
cannam@127 90 p->print(p, "(mpi-rdft-rank-geq2%s%(%p%)%(%p%))",
cannam@127 91 ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cld2);
cannam@127 92 }
cannam@127 93
cannam@127 94 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 95 {
cannam@127 96 const S *ego = (const S *) ego_;
cannam@127 97 const problem_mpi_rdft *p;
cannam@127 98 P *pln;
cannam@127 99 plan *cld1 = 0, *cld2 = 0;
cannam@127 100 R *I, *O, *I2;
cannam@127 101 tensor *sz;
cannam@127 102 dtensor *sz2;
cannam@127 103 int i, my_pe, n_pes;
cannam@127 104 INT nrest;
cannam@127 105 static const plan_adt padt = {
cannam@127 106 XM(rdft_solve), awake, print, destroy
cannam@127 107 };
cannam@127 108
cannam@127 109 UNUSED(ego);
cannam@127 110
cannam@127 111 if (!applicable(ego, p_, plnr))
cannam@127 112 return (plan *) 0;
cannam@127 113
cannam@127 114 p = (const problem_mpi_rdft *) p_;
cannam@127 115
cannam@127 116 I2 = I = p->I;
cannam@127 117 O = p->O;
cannam@127 118 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr))
cannam@127 119 I = O;
cannam@127 120 MPI_Comm_rank(p->comm, &my_pe);
cannam@127 121 MPI_Comm_size(p->comm, &n_pes);
cannam@127 122
cannam@127 123 sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
cannam@127 124 i = p->sz->rnk - 2; A(i >= 0);
cannam@127 125 sz->dims[i].n = p->sz->dims[i+1].n;
cannam@127 126 sz->dims[i].is = sz->dims[i].os = p->vn;
cannam@127 127 for (--i; i >= 0; --i) {
cannam@127 128 sz->dims[i].n = p->sz->dims[i+1].n;
cannam@127 129 sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
cannam@127 130 }
cannam@127 131 nrest = X(tensor_sz)(sz);
cannam@127 132 {
cannam@127 133 INT is = sz->dims[0].n * sz->dims[0].is;
cannam@127 134 INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe);
cannam@127 135 cld1 = X(mkplan_d)(plnr,
cannam@127 136 X(mkproblem_rdft_d)(sz,
cannam@127 137 X(mktensor_2d)(b, is, is,
cannam@127 138 p->vn, 1, 1),
cannam@127 139 I2, I, p->kind + 1));
cannam@127 140 if (XM(any_true)(!cld1, p->comm)) goto nada;
cannam@127 141 }
cannam@127 142
cannam@127 143 sz2 = XM(mkdtensor)(1); /* tensor for first (distributed) dimension */
cannam@127 144 sz2->dims[0] = p->sz->dims[0];
cannam@127 145 cld2 = X(mkplan_d)(plnr, XM(mkproblem_rdft_d)(sz2, nrest * p->vn,
cannam@127 146 I, O,
cannam@127 147 p->comm, p->kind,
cannam@127 148 RANK1_BIGVEC_ONLY));
cannam@127 149 if (XM(any_true)(!cld2, p->comm)) goto nada;
cannam@127 150
cannam@127 151 pln = MKPLAN_MPI_RDFT(P, &padt, apply);
cannam@127 152 pln->cld1 = cld1;
cannam@127 153 pln->cld2 = cld2;
cannam@127 154 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
cannam@127 155
cannam@127 156 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
cannam@127 157
cannam@127 158 return &(pln->super.super);
cannam@127 159
cannam@127 160 nada:
cannam@127 161 X(plan_destroy_internal)(cld2);
cannam@127 162 X(plan_destroy_internal)(cld1);
cannam@127 163 return (plan *) 0;
cannam@127 164 }
cannam@127 165
cannam@127 166 static solver *mksolver(int preserve_input)
cannam@127 167 {
cannam@127 168 static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 };
cannam@127 169 S *slv = MKSOLVER(S, &sadt);
cannam@127 170 slv->preserve_input = preserve_input;
cannam@127 171 return &(slv->super);
cannam@127 172 }
cannam@127 173
cannam@127 174 void XM(rdft_rank_geq2_register)(planner *p)
cannam@127 175 {
cannam@127 176 int preserve_input;
cannam@127 177 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
cannam@127 178 REGISTER_SOLVER(p, mksolver(preserve_input));
cannam@127 179 }