cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21 /* Complex DFTs of rank == 1 via six-step algorithm. */
|
cannam@127
|
22
|
cannam@127
|
23 #include "mpi-dft.h"
|
cannam@127
|
24 #include "mpi-transpose.h"
|
cannam@127
|
25 #include "dft.h"
|
cannam@127
|
26
|
cannam@127
|
27 typedef struct {
|
cannam@127
|
28 solver super;
|
cannam@127
|
29 rdftapply apply; /* apply_ddft_first or apply_ddft_last */
|
cannam@127
|
30 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
|
cannam@127
|
31 } S;
|
cannam@127
|
32
|
cannam@127
|
33 typedef struct {
|
cannam@127
|
34 plan_mpi_dft super;
|
cannam@127
|
35
|
cannam@127
|
36 triggen *t;
|
cannam@127
|
37 plan *cldt, *cld_ddft, *cld_dft;
|
cannam@127
|
38 INT roff, ioff;
|
cannam@127
|
39 int preserve_input;
|
cannam@127
|
40 INT vn, xmin, xmax, xs, m, r;
|
cannam@127
|
41 } P;
|
cannam@127
|
42
|
cannam@127
|
43 static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi)
|
cannam@127
|
44 {
|
cannam@127
|
45 void (*rotate)(triggen *, INT, R, R, R *) = t->rotate;
|
cannam@127
|
46 INT im, iv;
|
cannam@127
|
47 for (im = 0; im < m; ++im)
|
cannam@127
|
48 for (iv = 0; iv < vn; ++iv) {
|
cannam@127
|
49 /* TODO: modify/inline rotate function
|
cannam@127
|
50 so that it can do whole vn vector at once? */
|
cannam@127
|
51 R c[2];
|
cannam@127
|
52 rotate(t, ir * im, *xr, *xi, c);
|
cannam@127
|
53 *xr = c[0]; *xi = c[1];
|
cannam@127
|
54 xr += 2; xi += 2;
|
cannam@127
|
55 }
|
cannam@127
|
56 }
|
cannam@127
|
57
|
cannam@127
|
58 /* radix-r DFT of size r*m. This is equivalent to an m x r 2d DFT,
|
cannam@127
|
59 plus twiddle factors between the size-m and size-r 1d DFTs, where
|
cannam@127
|
60 the m dimension is initially distributed. The output is transposed
|
cannam@127
|
61 to r x m where the r dimension is distributed.
|
cannam@127
|
62
|
cannam@127
|
63 This algorithm follows the general sequence:
|
cannam@127
|
64 global transpose (m x r -> r x m)
|
cannam@127
|
65 DFTs of size m
|
cannam@127
|
66 multiply by twiddles + global transpose (r x m -> m x r)
|
cannam@127
|
67 DFTs of size r
|
cannam@127
|
68 global transpose (m x r -> r x m)
|
cannam@127
|
69 where the multiplication by twiddles can come before or after
|
cannam@127
|
70 the middle transpose. The first/last transposes are omitted
|
cannam@127
|
71 for SCRAMBLED_IN/OUT formats, respectively.
|
cannam@127
|
72
|
cannam@127
|
73 However, we wish to exploit our dft-rank1-bigvec solver, which
|
cannam@127
|
74 solves a vector of distributed DFTs via transpose+dft+transpose.
|
cannam@127
|
75 Therefore, we can group *either* the DFTs of size m *or* the
|
cannam@127
|
76 DFTs of size r with their surrounding transposes as a single
|
cannam@127
|
77 distributed-DFT (ddft) plan. These two variations correspond to
|
cannam@127
|
78 apply_ddft_first or apply_ddft_last, respectively.
|
cannam@127
|
79 */
|
cannam@127
|
80
|
cannam@127
|
81 static void apply_ddft_first(const plan *ego_, R *I, R *O)
|
cannam@127
|
82 {
|
cannam@127
|
83 const P *ego = (const P *) ego_;
|
cannam@127
|
84 plan_dft *cld_dft;
|
cannam@127
|
85 plan_rdft *cldt, *cld_ddft;
|
cannam@127
|
86 INT roff, ioff, im, mmax, ms, r, vn;
|
cannam@127
|
87 triggen *t;
|
cannam@127
|
88 R *dI, *dO;
|
cannam@127
|
89
|
cannam@127
|
90 /* distributed size-m DFTs, with output in m x r format */
|
cannam@127
|
91 cld_ddft = (plan_rdft *) ego->cld_ddft;
|
cannam@127
|
92 cld_ddft->apply(ego->cld_ddft, I, O);
|
cannam@127
|
93
|
cannam@127
|
94 cldt = (plan_rdft *) ego->cldt;
|
cannam@127
|
95 if (ego->preserve_input || !cldt) I = O;
|
cannam@127
|
96
|
cannam@127
|
97 /* twiddle multiplications, followed by 1d DFTs of size-r */
|
cannam@127
|
98 cld_dft = (plan_dft *) ego->cld_dft;
|
cannam@127
|
99 roff = ego->roff; ioff = ego->ioff;
|
cannam@127
|
100 mmax = ego->xmax; ms = ego->xs;
|
cannam@127
|
101 t = ego->t; r = ego->r; vn = ego->vn;
|
cannam@127
|
102 dI = O; dO = I;
|
cannam@127
|
103 for (im = ego->xmin; im <= mmax; ++im) {
|
cannam@127
|
104 do_twiddle(t, im, r, vn, dI+roff, dI+ioff);
|
cannam@127
|
105 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
|
cannam@127
|
106 dI += ms; dO += ms;
|
cannam@127
|
107 }
|
cannam@127
|
108
|
cannam@127
|
109 /* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */
|
cannam@127
|
110 if (cldt)
|
cannam@127
|
111 cldt->apply((plan *) cldt, I, O);
|
cannam@127
|
112 }
|
cannam@127
|
113
|
cannam@127
|
114 static void apply_ddft_last(const plan *ego_, R *I, R *O)
|
cannam@127
|
115 {
|
cannam@127
|
116 const P *ego = (const P *) ego_;
|
cannam@127
|
117 plan_dft *cld_dft;
|
cannam@127
|
118 plan_rdft *cldt, *cld_ddft;
|
cannam@127
|
119 INT roff, ioff, ir, rmax, rs, m, vn;
|
cannam@127
|
120 triggen *t;
|
cannam@127
|
121 R *dI, *dO0, *dO;
|
cannam@127
|
122
|
cannam@127
|
123 /* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */
|
cannam@127
|
124 cldt = (plan_rdft *) ego->cldt;
|
cannam@127
|
125 if (cldt) {
|
cannam@127
|
126 cldt->apply((plan *) cldt, I, O);
|
cannam@127
|
127 dI = O;
|
cannam@127
|
128 }
|
cannam@127
|
129 else
|
cannam@127
|
130 dI = I;
|
cannam@127
|
131 if (ego->preserve_input) dO = O; else dO = I;
|
cannam@127
|
132 dO0 = dO;
|
cannam@127
|
133
|
cannam@127
|
134 /* 1d DFTs of size m, followed by twiddle multiplications */
|
cannam@127
|
135 cld_dft = (plan_dft *) ego->cld_dft;
|
cannam@127
|
136 roff = ego->roff; ioff = ego->ioff;
|
cannam@127
|
137 rmax = ego->xmax; rs = ego->xs;
|
cannam@127
|
138 t = ego->t; m = ego->m; vn = ego->vn;
|
cannam@127
|
139 for (ir = ego->xmin; ir <= rmax; ++ir) {
|
cannam@127
|
140 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
|
cannam@127
|
141 do_twiddle(t, ir, m, vn, dO+roff, dO+ioff);
|
cannam@127
|
142 dI += rs; dO += rs;
|
cannam@127
|
143 }
|
cannam@127
|
144
|
cannam@127
|
145 /* distributed size-r DFTs, with output in r x m format */
|
cannam@127
|
146 cld_ddft = (plan_rdft *) ego->cld_ddft;
|
cannam@127
|
147 cld_ddft->apply(ego->cld_ddft, dO0, O);
|
cannam@127
|
148 }
|
cannam@127
|
149
|
cannam@127
|
150 static int applicable(const S *ego, const problem *p_,
|
cannam@127
|
151 const planner *plnr,
|
cannam@127
|
152 INT *r, INT rblock[2], INT mblock[2])
|
cannam@127
|
153 {
|
cannam@127
|
154 const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
|
cannam@127
|
155 int n_pes;
|
cannam@127
|
156 MPI_Comm_size(p->comm, &n_pes);
|
cannam@127
|
157 return (1
|
cannam@127
|
158 && p->sz->rnk == 1
|
cannam@127
|
159
|
cannam@127
|
160 && ONLY_SCRAMBLEDP(p->flags)
|
cannam@127
|
161
|
cannam@127
|
162 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
|
cannam@127
|
163 && p->I != p->O))
|
cannam@127
|
164
|
cannam@127
|
165 && (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last)
|
cannam@127
|
166 && (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first)
|
cannam@127
|
167
|
cannam@127
|
168 && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */
|
cannam@127
|
169 || !XM(dft_serial_applicable)(p))
|
cannam@127
|
170
|
cannam@127
|
171 /* disallow if dft-rank1-bigvec is applicable since the
|
cannam@127
|
172 data distribution may be slightly different (ugh!) */
|
cannam@127
|
173 && (p->vn < n_pes || p->flags)
|
cannam@127
|
174
|
cannam@127
|
175 && (*r = XM(choose_radix)(p->sz->dims[0], n_pes,
|
cannam@127
|
176 p->flags, p->sign,
|
cannam@127
|
177 rblock, mblock))
|
cannam@127
|
178
|
cannam@127
|
179 /* ddft_first or last has substantial advantages in the
|
cannam@127
|
180 bigvec transpositions for the common case where
|
cannam@127
|
181 n_pes == n/r or r, respectively */
|
cannam@127
|
182 && (!NO_UGLYP(plnr)
|
cannam@127
|
183 || !(*r == n_pes && ego->apply == apply_ddft_first)
|
cannam@127
|
184 || !(p->sz->dims[0].n / *r == n_pes
|
cannam@127
|
185 && ego->apply == apply_ddft_last))
|
cannam@127
|
186 );
|
cannam@127
|
187 }
|
cannam@127
|
188
|
cannam@127
|
189 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@127
|
190 {
|
cannam@127
|
191 P *ego = (P *) ego_;
|
cannam@127
|
192 X(plan_awake)(ego->cldt, wakefulness);
|
cannam@127
|
193 X(plan_awake)(ego->cld_dft, wakefulness);
|
cannam@127
|
194 X(plan_awake)(ego->cld_ddft, wakefulness);
|
cannam@127
|
195
|
cannam@127
|
196 switch (wakefulness) {
|
cannam@127
|
197 case SLEEPY:
|
cannam@127
|
198 X(triggen_destroy)(ego->t); ego->t = 0;
|
cannam@127
|
199 break;
|
cannam@127
|
200 default:
|
cannam@127
|
201 ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m);
|
cannam@127
|
202 break;
|
cannam@127
|
203 }
|
cannam@127
|
204 }
|
cannam@127
|
205
|
cannam@127
|
206 static void destroy(plan *ego_)
|
cannam@127
|
207 {
|
cannam@127
|
208 P *ego = (P *) ego_;
|
cannam@127
|
209 X(plan_destroy_internal)(ego->cldt);
|
cannam@127
|
210 X(plan_destroy_internal)(ego->cld_dft);
|
cannam@127
|
211 X(plan_destroy_internal)(ego->cld_ddft);
|
cannam@127
|
212 }
|
cannam@127
|
213
|
cannam@127
|
214 static void print(const plan *ego_, printer *p)
|
cannam@127
|
215 {
|
cannam@127
|
216 const P *ego = (const P *) ego_;
|
cannam@127
|
217 p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))",
|
cannam@127
|
218 ego->r,
|
cannam@127
|
219 ego->super.apply == apply_ddft_first ? "/first" : "/last",
|
cannam@127
|
220 ego->preserve_input==2 ?"/p":"",
|
cannam@127
|
221 ego->cld_ddft, ego->cld_dft, ego->cldt);
|
cannam@127
|
222 }
|
cannam@127
|
223
|
cannam@127
|
224 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
cannam@127
|
225 {
|
cannam@127
|
226 const S *ego = (const S *) ego_;
|
cannam@127
|
227 const problem_mpi_dft *p;
|
cannam@127
|
228 P *pln;
|
cannam@127
|
229 plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0;
|
cannam@127
|
230 R *ri, *ii, *ro, *io, *I, *O;
|
cannam@127
|
231 INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb;
|
cannam@127
|
232 int my_pe, n_pes, preserve_input, ddft_first;
|
cannam@127
|
233 dtensor *sz;
|
cannam@127
|
234 static const plan_adt padt = {
|
cannam@127
|
235 XM(dft_solve), awake, print, destroy
|
cannam@127
|
236 };
|
cannam@127
|
237
|
cannam@127
|
238 UNUSED(ego);
|
cannam@127
|
239
|
cannam@127
|
240 if (!applicable(ego, p_, plnr, &r, rblock, mblock))
|
cannam@127
|
241 return (plan *) 0;
|
cannam@127
|
242
|
cannam@127
|
243 p = (const problem_mpi_dft *) p_;
|
cannam@127
|
244
|
cannam@127
|
245 MPI_Comm_rank(p->comm, &my_pe);
|
cannam@127
|
246 MPI_Comm_size(p->comm, &n_pes);
|
cannam@127
|
247
|
cannam@127
|
248 m = p->sz->dims[0].n / r;
|
cannam@127
|
249
|
cannam@127
|
250 /* some hackery so that we can plan both ddft_first and ddft_last
|
cannam@127
|
251 as if they were ddft_first */
|
cannam@127
|
252 if ((ddft_first = (ego->apply == apply_ddft_first))) {
|
cannam@127
|
253 rp = r; mp = m;
|
cannam@127
|
254 mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB];
|
cannam@127
|
255 mpb = XM(block)(mp, mpblock[OB], my_pe);
|
cannam@127
|
256 }
|
cannam@127
|
257 else {
|
cannam@127
|
258 rp = m; mp = r;
|
cannam@127
|
259 mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB];
|
cannam@127
|
260 mpb = XM(block)(mp, mpblock[IB], my_pe);
|
cannam@127
|
261 }
|
cannam@127
|
262
|
cannam@127
|
263 preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
|
cannam@127
|
264
|
cannam@127
|
265 sz = XM(mkdtensor)(1);
|
cannam@127
|
266 sz->dims[0].n = mp;
|
cannam@127
|
267 sz->dims[0].b[IB] = mpblock[IB];
|
cannam@127
|
268 sz->dims[0].b[OB] = mpblock[OB];
|
cannam@127
|
269 I = (ddft_first || !preserve_input) ? p->I : p->O;
|
cannam@127
|
270 O = p->O;
|
cannam@127
|
271 cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn,
|
cannam@127
|
272 I, O, p->comm, p->sign,
|
cannam@127
|
273 RANK1_BIGVEC_ONLY));
|
cannam@127
|
274 if (XM(any_true)(!cld_ddft, p->comm)) goto nada;
|
cannam@127
|
275
|
cannam@127
|
276 I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2);
|
cannam@127
|
277 O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I,
|
cannam@127
|
278 rp * p->vn * 2);
|
cannam@127
|
279 X(extract_reim)(p->sign, I, &ri, &ii);
|
cannam@127
|
280 X(extract_reim)(p->sign, O, &ro, &io);
|
cannam@127
|
281 cld_dft = X(mkplan_d)(plnr,
|
cannam@127
|
282 X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2),
|
cannam@127
|
283 X(mktensor_1d)(p->vn, 2, 2),
|
cannam@127
|
284 ri, ii, ro, io));
|
cannam@127
|
285 if (XM(any_true)(!cld_dft, p->comm)) goto nada;
|
cannam@127
|
286
|
cannam@127
|
287 if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */
|
cannam@127
|
288 I = (ddft_first && preserve_input) ? p->O : p->I;
|
cannam@127
|
289 O = p->O;
|
cannam@127
|
290 cldt = X(mkplan_d)(plnr,
|
cannam@127
|
291 XM(mkproblem_transpose)(
|
cannam@127
|
292 m, r, p->vn * 2,
|
cannam@127
|
293 I, O,
|
cannam@127
|
294 ddft_first ? mblock[OB] : mblock[IB],
|
cannam@127
|
295 ddft_first ? rblock[OB] : rblock[IB],
|
cannam@127
|
296 p->comm, 0));
|
cannam@127
|
297 if (XM(any_true)(!cldt, p->comm)) goto nada;
|
cannam@127
|
298 }
|
cannam@127
|
299
|
cannam@127
|
300 pln = MKPLAN_MPI_DFT(P, &padt, ego->apply);
|
cannam@127
|
301
|
cannam@127
|
302 pln->cld_ddft = cld_ddft;
|
cannam@127
|
303 pln->cld_dft = cld_dft;
|
cannam@127
|
304 pln->cldt = cldt;
|
cannam@127
|
305 pln->preserve_input = preserve_input;
|
cannam@127
|
306 X(extract_reim)(p->sign, p->O, &ro, &io);
|
cannam@127
|
307 pln->roff = ro - p->O;
|
cannam@127
|
308 pln->ioff = io - p->O;
|
cannam@127
|
309 pln->vn = p->vn;
|
cannam@127
|
310 pln->m = m;
|
cannam@127
|
311 pln->r = r;
|
cannam@127
|
312 pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe;
|
cannam@127
|
313 pln->xmax = pln->xmin + mpb - 1;
|
cannam@127
|
314 pln->xs = rp * p->vn * 2;
|
cannam@127
|
315 pln->t = 0;
|
cannam@127
|
316
|
cannam@127
|
317 X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops);
|
cannam@127
|
318 if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops);
|
cannam@127
|
319 {
|
cannam@127
|
320 double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn;
|
cannam@127
|
321 pln->super.super.ops.mul += 8 * n0;
|
cannam@127
|
322 pln->super.super.ops.add += 4 * n0;
|
cannam@127
|
323 pln->super.super.ops.other += 8 * n0;
|
cannam@127
|
324 }
|
cannam@127
|
325
|
cannam@127
|
326 return &(pln->super.super);
|
cannam@127
|
327
|
cannam@127
|
328 nada:
|
cannam@127
|
329 X(plan_destroy_internal)(cldt);
|
cannam@127
|
330 X(plan_destroy_internal)(cld_dft);
|
cannam@127
|
331 X(plan_destroy_internal)(cld_ddft);
|
cannam@127
|
332 return (plan *) 0;
|
cannam@127
|
333 }
|
cannam@127
|
334
|
cannam@127
|
335 static solver *mksolver(rdftapply apply, int preserve_input)
|
cannam@127
|
336 {
|
cannam@127
|
337 static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
|
cannam@127
|
338 S *slv = MKSOLVER(S, &sadt);
|
cannam@127
|
339 slv->apply = apply;
|
cannam@127
|
340 slv->preserve_input = preserve_input;
|
cannam@127
|
341 return &(slv->super);
|
cannam@127
|
342 }
|
cannam@127
|
343
|
cannam@127
|
344 void XM(dft_rank1_register)(planner *p)
|
cannam@127
|
345 {
|
cannam@127
|
346 rdftapply apply[] = { apply_ddft_first, apply_ddft_last };
|
cannam@127
|
347 unsigned int iapply;
|
cannam@127
|
348 int preserve_input;
|
cannam@127
|
349 for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply)
|
cannam@127
|
350 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
|
cannam@127
|
351 REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input));
|
cannam@127
|
352 }
|