annotate src/fftw-3.3.5/mpi/dft-rank1.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* Complex DFTs of rank == 1 via six-step algorithm. */
cannam@127 22
cannam@127 23 #include "mpi-dft.h"
cannam@127 24 #include "mpi-transpose.h"
cannam@127 25 #include "dft.h"
cannam@127 26
cannam@127 27 typedef struct {
cannam@127 28 solver super;
cannam@127 29 rdftapply apply; /* apply_ddft_first or apply_ddft_last */
cannam@127 30 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
cannam@127 31 } S;
cannam@127 32
cannam@127 33 typedef struct {
cannam@127 34 plan_mpi_dft super;
cannam@127 35
cannam@127 36 triggen *t;
cannam@127 37 plan *cldt, *cld_ddft, *cld_dft;
cannam@127 38 INT roff, ioff;
cannam@127 39 int preserve_input;
cannam@127 40 INT vn, xmin, xmax, xs, m, r;
cannam@127 41 } P;
cannam@127 42
cannam@127 43 static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi)
cannam@127 44 {
cannam@127 45 void (*rotate)(triggen *, INT, R, R, R *) = t->rotate;
cannam@127 46 INT im, iv;
cannam@127 47 for (im = 0; im < m; ++im)
cannam@127 48 for (iv = 0; iv < vn; ++iv) {
cannam@127 49 /* TODO: modify/inline rotate function
cannam@127 50 so that it can do whole vn vector at once? */
cannam@127 51 R c[2];
cannam@127 52 rotate(t, ir * im, *xr, *xi, c);
cannam@127 53 *xr = c[0]; *xi = c[1];
cannam@127 54 xr += 2; xi += 2;
cannam@127 55 }
cannam@127 56 }
cannam@127 57
cannam@127 58 /* radix-r DFT of size r*m. This is equivalent to an m x r 2d DFT,
cannam@127 59 plus twiddle factors between the size-m and size-r 1d DFTs, where
cannam@127 60 the m dimension is initially distributed. The output is transposed
cannam@127 61 to r x m where the r dimension is distributed.
cannam@127 62
cannam@127 63 This algorithm follows the general sequence:
cannam@127 64 global transpose (m x r -> r x m)
cannam@127 65 DFTs of size m
cannam@127 66 multiply by twiddles + global transpose (r x m -> m x r)
cannam@127 67 DFTs of size r
cannam@127 68 global transpose (m x r -> r x m)
cannam@127 69 where the multiplication by twiddles can come before or after
cannam@127 70 the middle transpose. The first/last transposes are omitted
cannam@127 71 for SCRAMBLED_IN/OUT formats, respectively.
cannam@127 72
cannam@127 73 However, we wish to exploit our dft-rank1-bigvec solver, which
cannam@127 74 solves a vector of distributed DFTs via transpose+dft+transpose.
cannam@127 75 Therefore, we can group *either* the DFTs of size m *or* the
cannam@127 76 DFTs of size r with their surrounding transposes as a single
cannam@127 77 distributed-DFT (ddft) plan. These two variations correspond to
cannam@127 78 apply_ddft_first or apply_ddft_last, respectively.
cannam@127 79 */
cannam@127 80
cannam@127 81 static void apply_ddft_first(const plan *ego_, R *I, R *O)
cannam@127 82 {
cannam@127 83 const P *ego = (const P *) ego_;
cannam@127 84 plan_dft *cld_dft;
cannam@127 85 plan_rdft *cldt, *cld_ddft;
cannam@127 86 INT roff, ioff, im, mmax, ms, r, vn;
cannam@127 87 triggen *t;
cannam@127 88 R *dI, *dO;
cannam@127 89
cannam@127 90 /* distributed size-m DFTs, with output in m x r format */
cannam@127 91 cld_ddft = (plan_rdft *) ego->cld_ddft;
cannam@127 92 cld_ddft->apply(ego->cld_ddft, I, O);
cannam@127 93
cannam@127 94 cldt = (plan_rdft *) ego->cldt;
cannam@127 95 if (ego->preserve_input || !cldt) I = O;
cannam@127 96
cannam@127 97 /* twiddle multiplications, followed by 1d DFTs of size-r */
cannam@127 98 cld_dft = (plan_dft *) ego->cld_dft;
cannam@127 99 roff = ego->roff; ioff = ego->ioff;
cannam@127 100 mmax = ego->xmax; ms = ego->xs;
cannam@127 101 t = ego->t; r = ego->r; vn = ego->vn;
cannam@127 102 dI = O; dO = I;
cannam@127 103 for (im = ego->xmin; im <= mmax; ++im) {
cannam@127 104 do_twiddle(t, im, r, vn, dI+roff, dI+ioff);
cannam@127 105 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
cannam@127 106 dI += ms; dO += ms;
cannam@127 107 }
cannam@127 108
cannam@127 109 /* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */
cannam@127 110 if (cldt)
cannam@127 111 cldt->apply((plan *) cldt, I, O);
cannam@127 112 }
cannam@127 113
cannam@127 114 static void apply_ddft_last(const plan *ego_, R *I, R *O)
cannam@127 115 {
cannam@127 116 const P *ego = (const P *) ego_;
cannam@127 117 plan_dft *cld_dft;
cannam@127 118 plan_rdft *cldt, *cld_ddft;
cannam@127 119 INT roff, ioff, ir, rmax, rs, m, vn;
cannam@127 120 triggen *t;
cannam@127 121 R *dI, *dO0, *dO;
cannam@127 122
cannam@127 123 /* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */
cannam@127 124 cldt = (plan_rdft *) ego->cldt;
cannam@127 125 if (cldt) {
cannam@127 126 cldt->apply((plan *) cldt, I, O);
cannam@127 127 dI = O;
cannam@127 128 }
cannam@127 129 else
cannam@127 130 dI = I;
cannam@127 131 if (ego->preserve_input) dO = O; else dO = I;
cannam@127 132 dO0 = dO;
cannam@127 133
cannam@127 134 /* 1d DFTs of size m, followed by twiddle multiplications */
cannam@127 135 cld_dft = (plan_dft *) ego->cld_dft;
cannam@127 136 roff = ego->roff; ioff = ego->ioff;
cannam@127 137 rmax = ego->xmax; rs = ego->xs;
cannam@127 138 t = ego->t; m = ego->m; vn = ego->vn;
cannam@127 139 for (ir = ego->xmin; ir <= rmax; ++ir) {
cannam@127 140 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
cannam@127 141 do_twiddle(t, ir, m, vn, dO+roff, dO+ioff);
cannam@127 142 dI += rs; dO += rs;
cannam@127 143 }
cannam@127 144
cannam@127 145 /* distributed size-r DFTs, with output in r x m format */
cannam@127 146 cld_ddft = (plan_rdft *) ego->cld_ddft;
cannam@127 147 cld_ddft->apply(ego->cld_ddft, dO0, O);
cannam@127 148 }
cannam@127 149
cannam@127 150 static int applicable(const S *ego, const problem *p_,
cannam@127 151 const planner *plnr,
cannam@127 152 INT *r, INT rblock[2], INT mblock[2])
cannam@127 153 {
cannam@127 154 const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
cannam@127 155 int n_pes;
cannam@127 156 MPI_Comm_size(p->comm, &n_pes);
cannam@127 157 return (1
cannam@127 158 && p->sz->rnk == 1
cannam@127 159
cannam@127 160 && ONLY_SCRAMBLEDP(p->flags)
cannam@127 161
cannam@127 162 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
cannam@127 163 && p->I != p->O))
cannam@127 164
cannam@127 165 && (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last)
cannam@127 166 && (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first)
cannam@127 167
cannam@127 168 && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */
cannam@127 169 || !XM(dft_serial_applicable)(p))
cannam@127 170
cannam@127 171 /* disallow if dft-rank1-bigvec is applicable since the
cannam@127 172 data distribution may be slightly different (ugh!) */
cannam@127 173 && (p->vn < n_pes || p->flags)
cannam@127 174
cannam@127 175 && (*r = XM(choose_radix)(p->sz->dims[0], n_pes,
cannam@127 176 p->flags, p->sign,
cannam@127 177 rblock, mblock))
cannam@127 178
cannam@127 179 /* ddft_first or last has substantial advantages in the
cannam@127 180 bigvec transpositions for the common case where
cannam@127 181 n_pes == n/r or r, respectively */
cannam@127 182 && (!NO_UGLYP(plnr)
cannam@127 183 || !(*r == n_pes && ego->apply == apply_ddft_first)
cannam@127 184 || !(p->sz->dims[0].n / *r == n_pes
cannam@127 185 && ego->apply == apply_ddft_last))
cannam@127 186 );
cannam@127 187 }
cannam@127 188
cannam@127 189 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 190 {
cannam@127 191 P *ego = (P *) ego_;
cannam@127 192 X(plan_awake)(ego->cldt, wakefulness);
cannam@127 193 X(plan_awake)(ego->cld_dft, wakefulness);
cannam@127 194 X(plan_awake)(ego->cld_ddft, wakefulness);
cannam@127 195
cannam@127 196 switch (wakefulness) {
cannam@127 197 case SLEEPY:
cannam@127 198 X(triggen_destroy)(ego->t); ego->t = 0;
cannam@127 199 break;
cannam@127 200 default:
cannam@127 201 ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m);
cannam@127 202 break;
cannam@127 203 }
cannam@127 204 }
cannam@127 205
cannam@127 206 static void destroy(plan *ego_)
cannam@127 207 {
cannam@127 208 P *ego = (P *) ego_;
cannam@127 209 X(plan_destroy_internal)(ego->cldt);
cannam@127 210 X(plan_destroy_internal)(ego->cld_dft);
cannam@127 211 X(plan_destroy_internal)(ego->cld_ddft);
cannam@127 212 }
cannam@127 213
cannam@127 214 static void print(const plan *ego_, printer *p)
cannam@127 215 {
cannam@127 216 const P *ego = (const P *) ego_;
cannam@127 217 p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))",
cannam@127 218 ego->r,
cannam@127 219 ego->super.apply == apply_ddft_first ? "/first" : "/last",
cannam@127 220 ego->preserve_input==2 ?"/p":"",
cannam@127 221 ego->cld_ddft, ego->cld_dft, ego->cldt);
cannam@127 222 }
cannam@127 223
cannam@127 224 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 225 {
cannam@127 226 const S *ego = (const S *) ego_;
cannam@127 227 const problem_mpi_dft *p;
cannam@127 228 P *pln;
cannam@127 229 plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0;
cannam@127 230 R *ri, *ii, *ro, *io, *I, *O;
cannam@127 231 INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb;
cannam@127 232 int my_pe, n_pes, preserve_input, ddft_first;
cannam@127 233 dtensor *sz;
cannam@127 234 static const plan_adt padt = {
cannam@127 235 XM(dft_solve), awake, print, destroy
cannam@127 236 };
cannam@127 237
cannam@127 238 UNUSED(ego);
cannam@127 239
cannam@127 240 if (!applicable(ego, p_, plnr, &r, rblock, mblock))
cannam@127 241 return (plan *) 0;
cannam@127 242
cannam@127 243 p = (const problem_mpi_dft *) p_;
cannam@127 244
cannam@127 245 MPI_Comm_rank(p->comm, &my_pe);
cannam@127 246 MPI_Comm_size(p->comm, &n_pes);
cannam@127 247
cannam@127 248 m = p->sz->dims[0].n / r;
cannam@127 249
cannam@127 250 /* some hackery so that we can plan both ddft_first and ddft_last
cannam@127 251 as if they were ddft_first */
cannam@127 252 if ((ddft_first = (ego->apply == apply_ddft_first))) {
cannam@127 253 rp = r; mp = m;
cannam@127 254 mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB];
cannam@127 255 mpb = XM(block)(mp, mpblock[OB], my_pe);
cannam@127 256 }
cannam@127 257 else {
cannam@127 258 rp = m; mp = r;
cannam@127 259 mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB];
cannam@127 260 mpb = XM(block)(mp, mpblock[IB], my_pe);
cannam@127 261 }
cannam@127 262
cannam@127 263 preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
cannam@127 264
cannam@127 265 sz = XM(mkdtensor)(1);
cannam@127 266 sz->dims[0].n = mp;
cannam@127 267 sz->dims[0].b[IB] = mpblock[IB];
cannam@127 268 sz->dims[0].b[OB] = mpblock[OB];
cannam@127 269 I = (ddft_first || !preserve_input) ? p->I : p->O;
cannam@127 270 O = p->O;
cannam@127 271 cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn,
cannam@127 272 I, O, p->comm, p->sign,
cannam@127 273 RANK1_BIGVEC_ONLY));
cannam@127 274 if (XM(any_true)(!cld_ddft, p->comm)) goto nada;
cannam@127 275
cannam@127 276 I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2);
cannam@127 277 O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I,
cannam@127 278 rp * p->vn * 2);
cannam@127 279 X(extract_reim)(p->sign, I, &ri, &ii);
cannam@127 280 X(extract_reim)(p->sign, O, &ro, &io);
cannam@127 281 cld_dft = X(mkplan_d)(plnr,
cannam@127 282 X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2),
cannam@127 283 X(mktensor_1d)(p->vn, 2, 2),
cannam@127 284 ri, ii, ro, io));
cannam@127 285 if (XM(any_true)(!cld_dft, p->comm)) goto nada;
cannam@127 286
cannam@127 287 if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */
cannam@127 288 I = (ddft_first && preserve_input) ? p->O : p->I;
cannam@127 289 O = p->O;
cannam@127 290 cldt = X(mkplan_d)(plnr,
cannam@127 291 XM(mkproblem_transpose)(
cannam@127 292 m, r, p->vn * 2,
cannam@127 293 I, O,
cannam@127 294 ddft_first ? mblock[OB] : mblock[IB],
cannam@127 295 ddft_first ? rblock[OB] : rblock[IB],
cannam@127 296 p->comm, 0));
cannam@127 297 if (XM(any_true)(!cldt, p->comm)) goto nada;
cannam@127 298 }
cannam@127 299
cannam@127 300 pln = MKPLAN_MPI_DFT(P, &padt, ego->apply);
cannam@127 301
cannam@127 302 pln->cld_ddft = cld_ddft;
cannam@127 303 pln->cld_dft = cld_dft;
cannam@127 304 pln->cldt = cldt;
cannam@127 305 pln->preserve_input = preserve_input;
cannam@127 306 X(extract_reim)(p->sign, p->O, &ro, &io);
cannam@127 307 pln->roff = ro - p->O;
cannam@127 308 pln->ioff = io - p->O;
cannam@127 309 pln->vn = p->vn;
cannam@127 310 pln->m = m;
cannam@127 311 pln->r = r;
cannam@127 312 pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe;
cannam@127 313 pln->xmax = pln->xmin + mpb - 1;
cannam@127 314 pln->xs = rp * p->vn * 2;
cannam@127 315 pln->t = 0;
cannam@127 316
cannam@127 317 X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops);
cannam@127 318 if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops);
cannam@127 319 {
cannam@127 320 double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn;
cannam@127 321 pln->super.super.ops.mul += 8 * n0;
cannam@127 322 pln->super.super.ops.add += 4 * n0;
cannam@127 323 pln->super.super.ops.other += 8 * n0;
cannam@127 324 }
cannam@127 325
cannam@127 326 return &(pln->super.super);
cannam@127 327
cannam@127 328 nada:
cannam@127 329 X(plan_destroy_internal)(cldt);
cannam@127 330 X(plan_destroy_internal)(cld_dft);
cannam@127 331 X(plan_destroy_internal)(cld_ddft);
cannam@127 332 return (plan *) 0;
cannam@127 333 }
cannam@127 334
cannam@127 335 static solver *mksolver(rdftapply apply, int preserve_input)
cannam@127 336 {
cannam@127 337 static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
cannam@127 338 S *slv = MKSOLVER(S, &sadt);
cannam@127 339 slv->apply = apply;
cannam@127 340 slv->preserve_input = preserve_input;
cannam@127 341 return &(slv->super);
cannam@127 342 }
cannam@127 343
cannam@127 344 void XM(dft_rank1_register)(planner *p)
cannam@127 345 {
cannam@127 346 rdftapply apply[] = { apply_ddft_first, apply_ddft_last };
cannam@127 347 unsigned int iapply;
cannam@127 348 int preserve_input;
cannam@127 349 for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply)
cannam@127 350 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
cannam@127 351 REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input));
cannam@127 352 }