annotate src/fftw-3.3.5/mpi/block.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 #include "ifftw-mpi.h"
cannam@127 22
cannam@127 23 INT XM(num_blocks)(INT n, INT block)
cannam@127 24 {
cannam@127 25 return (n + block - 1) / block;
cannam@127 26 }
cannam@127 27
cannam@127 28 int XM(num_blocks_ok)(INT n, INT block, MPI_Comm comm)
cannam@127 29 {
cannam@127 30 int n_pes;
cannam@127 31 MPI_Comm_size(comm, &n_pes);
cannam@127 32 return n_pes >= XM(num_blocks)(n, block);
cannam@127 33 }
cannam@127 34
cannam@127 35 /* Pick a default block size for dividing a problem of size n among
cannam@127 36 n_pes processes. Divide as equally as possible, while minimizing
cannam@127 37 the maximum block size among the processes as well as the number of
cannam@127 38 processes with nonzero blocks. */
cannam@127 39 INT XM(default_block)(INT n, int n_pes)
cannam@127 40 {
cannam@127 41 return ((n + n_pes - 1) / n_pes);
cannam@127 42 }
cannam@127 43
cannam@127 44 /* For a given block size and dimension n, compute the block size
cannam@127 45 on the given process. */
cannam@127 46 INT XM(block)(INT n, INT block, int which_block)
cannam@127 47 {
cannam@127 48 INT d = n - which_block * block;
cannam@127 49 return d <= 0 ? 0 : (d > block ? block : d);
cannam@127 50 }
cannam@127 51
cannam@127 52 static INT num_blocks_kind(const ddim *dim, block_kind k)
cannam@127 53 {
cannam@127 54 return XM(num_blocks)(dim->n, dim->b[k]);
cannam@127 55 }
cannam@127 56
cannam@127 57 INT XM(num_blocks_total)(const dtensor *sz, block_kind k)
cannam@127 58 {
cannam@127 59 if (FINITE_RNK(sz->rnk)) {
cannam@127 60 int i;
cannam@127 61 INT ntot = 1;
cannam@127 62 for (i = 0; i < sz->rnk; ++i)
cannam@127 63 ntot *= num_blocks_kind(sz->dims + i, k);
cannam@127 64 return ntot;
cannam@127 65 }
cannam@127 66 else
cannam@127 67 return 0;
cannam@127 68 }
cannam@127 69
cannam@127 70 int XM(idle_process)(const dtensor *sz, block_kind k, int which_pe)
cannam@127 71 {
cannam@127 72 return (which_pe >= XM(num_blocks_total)(sz, k));
cannam@127 73 }
cannam@127 74
cannam@127 75 /* Given a non-idle process which_pe, computes the coordinate
cannam@127 76 vector coords[rnk] giving the coordinates of a block in the
cannam@127 77 matrix of blocks. k specifies whether we are talking about
cannam@127 78 the input or output data distribution. */
cannam@127 79 void XM(block_coords)(const dtensor *sz, block_kind k, int which_pe,
cannam@127 80 INT *coords)
cannam@127 81 {
cannam@127 82 int i;
cannam@127 83 A(!XM(idle_process)(sz, k, which_pe) && FINITE_RNK(sz->rnk));
cannam@127 84 for (i = sz->rnk - 1; i >= 0; --i) {
cannam@127 85 INT nb = num_blocks_kind(sz->dims + i, k);
cannam@127 86 coords[i] = which_pe % nb;
cannam@127 87 which_pe /= nb;
cannam@127 88 }
cannam@127 89 }
cannam@127 90
cannam@127 91 INT XM(total_block)(const dtensor *sz, block_kind k, int which_pe)
cannam@127 92 {
cannam@127 93 if (XM(idle_process)(sz, k, which_pe))
cannam@127 94 return 0;
cannam@127 95 else {
cannam@127 96 int i;
cannam@127 97 INT N = 1, *coords;
cannam@127 98 STACK_MALLOC(INT*, coords, sizeof(INT) * sz->rnk);
cannam@127 99 XM(block_coords)(sz, k, which_pe, coords);
cannam@127 100 for (i = 0; i < sz->rnk; ++i)
cannam@127 101 N *= XM(block)(sz->dims[i].n, sz->dims[i].b[k], coords[i]);
cannam@127 102 STACK_FREE(coords);
cannam@127 103 return N;
cannam@127 104 }
cannam@127 105 }
cannam@127 106
cannam@127 107 /* returns whether sz is local for dims >= dim */
cannam@127 108 int XM(is_local_after)(int dim, const dtensor *sz, block_kind k)
cannam@127 109 {
cannam@127 110 if (FINITE_RNK(sz->rnk))
cannam@127 111 for (; dim < sz->rnk; ++dim)
cannam@127 112 if (XM(num_blocks)(sz->dims[dim].n, sz->dims[dim].b[k]) > 1)
cannam@127 113 return 0;
cannam@127 114 return 1;
cannam@127 115 }
cannam@127 116
cannam@127 117 int XM(is_local)(const dtensor *sz, block_kind k)
cannam@127 118 {
cannam@127 119 return XM(is_local_after)(0, sz, k);
cannam@127 120 }
cannam@127 121
cannam@127 122 /* Return whether sz is distributed for k according to a simple
cannam@127 123 1d block distribution in the first or second dimensions */
cannam@127 124 int XM(is_block1d)(const dtensor *sz, block_kind k)
cannam@127 125 {
cannam@127 126 int i;
cannam@127 127 if (!FINITE_RNK(sz->rnk)) return 0;
cannam@127 128 for (i = 0; i < sz->rnk && num_blocks_kind(sz->dims + i, k) == 1; ++i) ;
cannam@127 129 return(i < sz->rnk && i < 2 && XM(is_local_after)(i + 1, sz, k));
cannam@127 130
cannam@127 131 }