annotate src/fftw-3.3.5/libbench2/verify-r2r.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in
cannam@127 22 general for all of the r2r variants...oh well, for now */
cannam@127 23
cannam@127 24 #include "verify.h"
cannam@127 25 #include <math.h>
cannam@127 26 #include <stdlib.h>
cannam@127 27 #include <stdio.h>
cannam@127 28
cannam@127 29 typedef struct {
cannam@127 30 bench_problem *p;
cannam@127 31 bench_tensor *probsz;
cannam@127 32 bench_tensor *totalsz;
cannam@127 33 bench_tensor *pckdsz;
cannam@127 34 bench_tensor *pckdvecsz;
cannam@127 35 } info;
cannam@127 36
cannam@127 37 /*
cannam@127 38 * Utility functions:
cannam@127 39 */
cannam@127 40
cannam@127 41 static double dabs(double x) { return (x < 0.0) ? -x : x; }
cannam@127 42 static double dmin(double x, double y) { return (x < y) ? x : y; }
cannam@127 43
cannam@127 44 static double raerror(R *a, R *b, int n)
cannam@127 45 {
cannam@127 46 if (n > 0) {
cannam@127 47 /* compute the relative Linf error */
cannam@127 48 double e = 0.0, mag = 0.0;
cannam@127 49 int i;
cannam@127 50
cannam@127 51 for (i = 0; i < n; ++i) {
cannam@127 52 e = dmax(e, dabs(a[i] - b[i]));
cannam@127 53 mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i])));
cannam@127 54 }
cannam@127 55 if (dabs(mag) < 1e-14 && dabs(e) < 1e-14)
cannam@127 56 e = 0.0;
cannam@127 57 else
cannam@127 58 e /= mag;
cannam@127 59
cannam@127 60 #ifdef HAVE_ISNAN
cannam@127 61 BENCH_ASSERT(!isnan(e));
cannam@127 62 #endif
cannam@127 63 return e;
cannam@127 64 } else
cannam@127 65 return 0.0;
cannam@127 66 }
cannam@127 67
cannam@127 68 #define by2pi(m, n) ((K2PI * (m)) / (n))
cannam@127 69
cannam@127 70 /*
cannam@127 71 * Improve accuracy by reducing x to range [0..1/8]
cannam@127 72 * before multiplication by 2 * PI.
cannam@127 73 */
cannam@127 74
cannam@127 75 static trigreal bench_sincos(trigreal m, trigreal n, int sinp)
cannam@127 76 {
cannam@127 77 /* waiting for C to get tail recursion... */
cannam@127 78 trigreal half_n = n * 0.5;
cannam@127 79 trigreal quarter_n = half_n * 0.5;
cannam@127 80 trigreal eighth_n = quarter_n * 0.5;
cannam@127 81 trigreal sgn = 1.0;
cannam@127 82
cannam@127 83 if (sinp) goto sin;
cannam@127 84 cos:
cannam@127 85 if (m < 0) { m = -m; /* goto cos; */ }
cannam@127 86 if (m > half_n) { m = n - m; goto cos; }
cannam@127 87 if (m > eighth_n) { m = quarter_n - m; goto sin; }
cannam@127 88 return sgn * COS(by2pi(m, n));
cannam@127 89
cannam@127 90 msin:
cannam@127 91 sgn = -sgn;
cannam@127 92 sin:
cannam@127 93 if (m < 0) { m = -m; goto msin; }
cannam@127 94 if (m > half_n) { m = n - m; goto msin; }
cannam@127 95 if (m > eighth_n) { m = quarter_n - m; goto cos; }
cannam@127 96 return sgn * SIN(by2pi(m, n));
cannam@127 97 }
cannam@127 98
cannam@127 99 static trigreal cos2pi(int m, int n)
cannam@127 100 {
cannam@127 101 return bench_sincos((trigreal)m, (trigreal)n, 0);
cannam@127 102 }
cannam@127 103
cannam@127 104 static trigreal sin2pi(int m, int n)
cannam@127 105 {
cannam@127 106 return bench_sincos((trigreal)m, (trigreal)n, 1);
cannam@127 107 }
cannam@127 108
cannam@127 109 static trigreal cos00(int i, int j, int n)
cannam@127 110 {
cannam@127 111 return cos2pi(i * j, n);
cannam@127 112 }
cannam@127 113
cannam@127 114 static trigreal cos01(int i, int j, int n)
cannam@127 115 {
cannam@127 116 return cos00(i, 2*j + 1, 2*n);
cannam@127 117 }
cannam@127 118
cannam@127 119 static trigreal cos10(int i, int j, int n)
cannam@127 120 {
cannam@127 121 return cos00(2*i + 1, j, 2*n);
cannam@127 122 }
cannam@127 123
cannam@127 124 static trigreal cos11(int i, int j, int n)
cannam@127 125 {
cannam@127 126 return cos00(2*i + 1, 2*j + 1, 4*n);
cannam@127 127 }
cannam@127 128
cannam@127 129 static trigreal sin00(int i, int j, int n)
cannam@127 130 {
cannam@127 131 return sin2pi(i * j, n);
cannam@127 132 }
cannam@127 133
cannam@127 134 static trigreal sin01(int i, int j, int n)
cannam@127 135 {
cannam@127 136 return sin00(i, 2*j + 1, 2*n);
cannam@127 137 }
cannam@127 138
cannam@127 139 static trigreal sin10(int i, int j, int n)
cannam@127 140 {
cannam@127 141 return sin00(2*i + 1, j, 2*n);
cannam@127 142 }
cannam@127 143
cannam@127 144 static trigreal sin11(int i, int j, int n)
cannam@127 145 {
cannam@127 146 return sin00(2*i + 1, 2*j + 1, 4*n);
cannam@127 147 }
cannam@127 148
cannam@127 149 static trigreal realhalf(int i, int j, int n)
cannam@127 150 {
cannam@127 151 UNUSED(i);
cannam@127 152 if (j <= n - j)
cannam@127 153 return 1.0;
cannam@127 154 else
cannam@127 155 return 0.0;
cannam@127 156 }
cannam@127 157
cannam@127 158 static trigreal coshalf(int i, int j, int n)
cannam@127 159 {
cannam@127 160 if (j <= n - j)
cannam@127 161 return cos00(i, j, n);
cannam@127 162 else
cannam@127 163 return cos00(i, n - j, n);
cannam@127 164 }
cannam@127 165
cannam@127 166 static trigreal unity(int i, int j, int n)
cannam@127 167 {
cannam@127 168 UNUSED(i);
cannam@127 169 UNUSED(j);
cannam@127 170 UNUSED(n);
cannam@127 171 return 1.0;
cannam@127 172 }
cannam@127 173
cannam@127 174 typedef trigreal (*trigfun)(int, int, int);
cannam@127 175
cannam@127 176 static void rarand(R *a, int n)
cannam@127 177 {
cannam@127 178 int i;
cannam@127 179
cannam@127 180 /* generate random inputs */
cannam@127 181 for (i = 0; i < n; ++i) {
cannam@127 182 a[i] = mydrand();
cannam@127 183 }
cannam@127 184 }
cannam@127 185
cannam@127 186 /* C = A + B */
cannam@127 187 static void raadd(R *c, R *a, R *b, int n)
cannam@127 188 {
cannam@127 189 int i;
cannam@127 190
cannam@127 191 for (i = 0; i < n; ++i) {
cannam@127 192 c[i] = a[i] + b[i];
cannam@127 193 }
cannam@127 194 }
cannam@127 195
cannam@127 196 /* C = A - B */
cannam@127 197 static void rasub(R *c, R *a, R *b, int n)
cannam@127 198 {
cannam@127 199 int i;
cannam@127 200
cannam@127 201 for (i = 0; i < n; ++i) {
cannam@127 202 c[i] = a[i] - b[i];
cannam@127 203 }
cannam@127 204 }
cannam@127 205
cannam@127 206 /* B = rotate left A + rotate right A */
cannam@127 207 static void rarolr(R *b, R *a, int n, int nb, int na,
cannam@127 208 r2r_kind_t k)
cannam@127 209 {
cannam@127 210 int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0;
cannam@127 211 int i, ib, ia;
cannam@127 212
cannam@127 213 for (ib = 0; ib < nb; ++ib) {
cannam@127 214 for (i = 0; i < n - 1; ++i)
cannam@127 215 for (ia = 0; ia < na; ++ia)
cannam@127 216 b[(ib * n + i) * na + ia] =
cannam@127 217 a[(ib * n + i + 1) * na + ia];
cannam@127 218
cannam@127 219 /* ugly switch to do boundary conditions for various r2r types */
cannam@127 220 switch (k) {
cannam@127 221 /* periodic boundaries */
cannam@127 222 case R2R_DHT:
cannam@127 223 case R2R_R2HC:
cannam@127 224 for (ia = 0; ia < na; ++ia) {
cannam@127 225 b[(ib * n + n - 1) * na + ia] =
cannam@127 226 a[(ib * n + 0) * na + ia];
cannam@127 227 b[(ib * n + 0) * na + ia] +=
cannam@127 228 a[(ib * n + n - 1) * na + ia];
cannam@127 229 }
cannam@127 230 break;
cannam@127 231
cannam@127 232 case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */
cannam@127 233 if (n > 2) {
cannam@127 234 if (n % 2 == 0)
cannam@127 235 for (ia = 0; ia < na; ++ia) {
cannam@127 236 b[(ib * n + n - 1) * na + ia] = 0.0;
cannam@127 237 b[(ib * n + 0) * na + ia] +=
cannam@127 238 a[(ib * n + 1) * na + ia];
cannam@127 239 b[(ib * n + n/2) * na + ia] +=
cannam@127 240 + a[(ib * n + n/2 - 1) * na + ia]
cannam@127 241 - a[(ib * n + n/2 + 1) * na + ia];
cannam@127 242 b[(ib * n + n/2 + 1) * na + ia] +=
cannam@127 243 - a[(ib * n + n/2) * na + ia];
cannam@127 244 }
cannam@127 245 else
cannam@127 246 for (ia = 0; ia < na; ++ia) {
cannam@127 247 b[(ib * n + n - 1) * na + ia] = 0.0;
cannam@127 248 b[(ib * n + 0) * na + ia] +=
cannam@127 249 a[(ib * n + 1) * na + ia];
cannam@127 250 b[(ib * n + n/2) * na + ia] +=
cannam@127 251 + a[(ib * n + n/2) * na + ia]
cannam@127 252 - a[(ib * n + n/2 + 1) * na + ia];
cannam@127 253 b[(ib * n + n/2 + 1) * na + ia] +=
cannam@127 254 - a[(ib * n + n/2 + 1) * na + ia]
cannam@127 255 - a[(ib * n + n/2) * na + ia];
cannam@127 256 }
cannam@127 257 } else /* n <= 2 */ {
cannam@127 258 for (ia = 0; ia < na; ++ia) {
cannam@127 259 b[(ib * n + n - 1) * na + ia] =
cannam@127 260 a[(ib * n + 0) * na + ia];
cannam@127 261 b[(ib * n + 0) * na + ia] +=
cannam@127 262 a[(ib * n + n - 1) * na + ia];
cannam@127 263 }
cannam@127 264 }
cannam@127 265 break;
cannam@127 266
cannam@127 267 /* various even/odd boundary conditions */
cannam@127 268 case R2R_REDFT00:
cannam@127 269 isL1 = isR1 = 1;
cannam@127 270 goto mirrors;
cannam@127 271 case R2R_REDFT01:
cannam@127 272 isL1 = 1;
cannam@127 273 goto mirrors;
cannam@127 274 case R2R_REDFT10:
cannam@127 275 isL0 = isR0 = 1;
cannam@127 276 goto mirrors;
cannam@127 277 case R2R_REDFT11:
cannam@127 278 isL0 = 1;
cannam@127 279 isR0 = -1;
cannam@127 280 goto mirrors;
cannam@127 281 case R2R_RODFT00:
cannam@127 282 goto mirrors;
cannam@127 283 case R2R_RODFT01:
cannam@127 284 isR1 = 1;
cannam@127 285 goto mirrors;
cannam@127 286 case R2R_RODFT10:
cannam@127 287 isL0 = isR0 = -1;
cannam@127 288 goto mirrors;
cannam@127 289 case R2R_RODFT11:
cannam@127 290 isL0 = -1;
cannam@127 291 isR0 = 1;
cannam@127 292 goto mirrors;
cannam@127 293
cannam@127 294 mirrors:
cannam@127 295
cannam@127 296 for (ia = 0; ia < na; ++ia)
cannam@127 297 b[(ib * n + n - 1) * na + ia] =
cannam@127 298 isR0 * a[(ib * n + n - 1) * na + ia]
cannam@127 299 + (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia]
cannam@127 300 : 0);
cannam@127 301
cannam@127 302 for (ia = 0; ia < na; ++ia)
cannam@127 303 b[(ib * n) * na + ia] +=
cannam@127 304 isL0 * a[(ib * n) * na + ia]
cannam@127 305 + (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0);
cannam@127 306
cannam@127 307 }
cannam@127 308
cannam@127 309 for (i = 1; i < n; ++i)
cannam@127 310 for (ia = 0; ia < na; ++ia)
cannam@127 311 b[(ib * n + i) * na + ia] +=
cannam@127 312 a[(ib * n + i - 1) * na + ia];
cannam@127 313 }
cannam@127 314 }
cannam@127 315
cannam@127 316 static void raphase_shift(R *b, R *a, int n, int nb, int na,
cannam@127 317 int n0, int k0, trigfun t)
cannam@127 318 {
cannam@127 319 int j, jb, ja;
cannam@127 320
cannam@127 321 for (jb = 0; jb < nb; ++jb)
cannam@127 322 for (j = 0; j < n; ++j) {
cannam@127 323 trigreal c = 2.0 * t(1, j + k0, n0);
cannam@127 324
cannam@127 325 for (ja = 0; ja < na; ++ja) {
cannam@127 326 int k = (jb * n + j) * na + ja;
cannam@127 327 b[k] = a[k] * c;
cannam@127 328 }
cannam@127 329 }
cannam@127 330 }
cannam@127 331
cannam@127 332 /* A = alpha * A (real, in place) */
cannam@127 333 static void rascale(R *a, R alpha, int n)
cannam@127 334 {
cannam@127 335 int i;
cannam@127 336
cannam@127 337 for (i = 0; i < n; ++i) {
cannam@127 338 a[i] *= alpha;
cannam@127 339 }
cannam@127 340 }
cannam@127 341
cannam@127 342 /*
cannam@127 343 * compute rdft:
cannam@127 344 */
cannam@127 345
cannam@127 346 /* copy real A into real B, using output stride of A and input stride of B */
cannam@127 347 typedef struct {
cannam@127 348 dotens2_closure k;
cannam@127 349 R *ra;
cannam@127 350 R *rb;
cannam@127 351 } cpyr_closure;
cannam@127 352
cannam@127 353 static void cpyr0(dotens2_closure *k_,
cannam@127 354 int indxa, int ondxa, int indxb, int ondxb)
cannam@127 355 {
cannam@127 356 cpyr_closure *k = (cpyr_closure *)k_;
cannam@127 357 k->rb[indxb] = k->ra[ondxa];
cannam@127 358 UNUSED(indxa); UNUSED(ondxb);
cannam@127 359 }
cannam@127 360
cannam@127 361 static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb)
cannam@127 362 {
cannam@127 363 cpyr_closure k;
cannam@127 364 k.k.apply = cpyr0;
cannam@127 365 k.ra = ra; k.rb = rb;
cannam@127 366 bench_dotens2(sza, szb, &k.k);
cannam@127 367 }
cannam@127 368
cannam@127 369 static void dofft(info *nfo, R *in, R *out)
cannam@127 370 {
cannam@127 371 cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz);
cannam@127 372 after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in);
cannam@127 373 doit(1, nfo->p);
cannam@127 374 after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out);
cannam@127 375 cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz);
cannam@127 376 }
cannam@127 377
cannam@127 378 static double racmp(R *a, R *b, int n, const char *test, double tol)
cannam@127 379 {
cannam@127 380 double d = raerror(a, b, n);
cannam@127 381 if (d > tol) {
cannam@127 382 ovtpvt_err("Found relative error %e (%s)\n", d, test);
cannam@127 383 {
cannam@127 384 int i, N;
cannam@127 385 N = n > 300 && verbose <= 2 ? 300 : n;
cannam@127 386 for (i = 0; i < N; ++i)
cannam@127 387 ovtpvt_err("%8d %16.12f %16.12f\n", i,
cannam@127 388 (double) a[i],
cannam@127 389 (double) b[i]);
cannam@127 390 }
cannam@127 391 bench_exit(EXIT_FAILURE);
cannam@127 392 }
cannam@127 393 return d;
cannam@127 394 }
cannam@127 395
cannam@127 396 /***********************************************************************/
cannam@127 397
cannam@127 398 typedef struct {
cannam@127 399 int n; /* physical size */
cannam@127 400 int n0; /* "logical" transform size */
cannam@127 401 int i0, k0; /* shifts of input/output */
cannam@127 402 trigfun ti, ts; /* impulse/shift trig functions */
cannam@127 403 } dim_stuff;
cannam@127 404
cannam@127 405 static void impulse_response(int rnk, dim_stuff *d, R impulse_amp,
cannam@127 406 R *A, int N)
cannam@127 407 {
cannam@127 408 if (rnk == 0)
cannam@127 409 A[0] = impulse_amp;
cannam@127 410 else {
cannam@127 411 int i;
cannam@127 412 N /= d->n;
cannam@127 413 for (i = 0; i < d->n; ++i) {
cannam@127 414 impulse_response(rnk - 1, d + 1,
cannam@127 415 impulse_amp * d->ti(d->i0, d->k0 + i, d->n0),
cannam@127 416 A + i * N, N);
cannam@127 417 }
cannam@127 418 }
cannam@127 419 }
cannam@127 420
cannam@127 421 /***************************************************************************/
cannam@127 422
cannam@127 423 /*
cannam@127 424 * Implementation of the FFT tester described in
cannam@127 425 *
cannam@127 426 * Funda Ergün. Testing multivariate linear functions: Overcoming the
cannam@127 427 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
cannam@127 428 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
cannam@127 429 * Nevada, 29 May--1 June 1995.
cannam@127 430 *
cannam@127 431 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
cannam@127 432 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
cannam@127 433 */
cannam@127 434
cannam@127 435 static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA,
cannam@127 436 R *outB, R *outC, R *tmp, int rounds, double tol)
cannam@127 437 {
cannam@127 438 double e = 0.0;
cannam@127 439 int j;
cannam@127 440
cannam@127 441 for (j = 0; j < rounds; ++j) {
cannam@127 442 R alpha, beta;
cannam@127 443 alpha = mydrand();
cannam@127 444 beta = mydrand();
cannam@127 445 rarand(inA, n);
cannam@127 446 rarand(inB, n);
cannam@127 447 dofft(nfo, inA, outA);
cannam@127 448 dofft(nfo, inB, outB);
cannam@127 449
cannam@127 450 rascale(outA, alpha, n);
cannam@127 451 rascale(outB, beta, n);
cannam@127 452 raadd(tmp, outA, outB, n);
cannam@127 453 rascale(inA, alpha, n);
cannam@127 454 rascale(inB, beta, n);
cannam@127 455 raadd(inC, inA, inB, n);
cannam@127 456 dofft(nfo, inC, outC);
cannam@127 457
cannam@127 458 e = dmax(e, racmp(outC, tmp, n, "linear", tol));
cannam@127 459 }
cannam@127 460 return e;
cannam@127 461 }
cannam@127 462
cannam@127 463 static double rimpulse(dim_stuff *d, R impulse_amp,
cannam@127 464 int n, int vecn, info *nfo,
cannam@127 465 R *inA, R *inB, R *inC,
cannam@127 466 R *outA, R *outB, R *outC,
cannam@127 467 R *tmp, int rounds, double tol)
cannam@127 468 {
cannam@127 469 double e = 0.0;
cannam@127 470 int N = n * vecn;
cannam@127 471 int i;
cannam@127 472 int j;
cannam@127 473
cannam@127 474 /* test 2: check that the unit impulse is transformed properly */
cannam@127 475
cannam@127 476 for (i = 0; i < N; ++i) {
cannam@127 477 /* pls */
cannam@127 478 inA[i] = 0.0;
cannam@127 479 }
cannam@127 480 for (i = 0; i < vecn; ++i) {
cannam@127 481 inA[i * n] = (i+1) / (double)(vecn+1);
cannam@127 482
cannam@127 483 /* transform of the pls */
cannam@127 484 impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n],
cannam@127 485 outA + i * n, n);
cannam@127 486 }
cannam@127 487
cannam@127 488 dofft(nfo, inA, tmp);
cannam@127 489 e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol));
cannam@127 490
cannam@127 491 for (j = 0; j < rounds; ++j) {
cannam@127 492 rarand(inB, N);
cannam@127 493 rasub(inC, inA, inB, N);
cannam@127 494 dofft(nfo, inB, outB);
cannam@127 495 dofft(nfo, inC, outC);
cannam@127 496 raadd(tmp, outB, outC, N);
cannam@127 497 e = dmax(e, racmp(tmp, outA, N, "impulse", tol));
cannam@127 498 }
cannam@127 499 return e;
cannam@127 500 }
cannam@127 501
cannam@127 502 static double t_shift(int n, int vecn, info *nfo,
cannam@127 503 R *inA, R *inB, R *outA, R *outB, R *tmp,
cannam@127 504 int rounds, double tol,
cannam@127 505 dim_stuff *d)
cannam@127 506 {
cannam@127 507 double e = 0.0;
cannam@127 508 int nb, na, dim, N = n * vecn;
cannam@127 509 int i, j;
cannam@127 510 bench_tensor *sz = nfo->probsz;
cannam@127 511
cannam@127 512 /* test 3: check the time-shift property */
cannam@127 513 /* the paper performs more tests, but this code should be fine too */
cannam@127 514
cannam@127 515 nb = 1;
cannam@127 516 na = n;
cannam@127 517
cannam@127 518 /* check shifts across all SZ dimensions */
cannam@127 519 for (dim = 0; dim < sz->rnk; ++dim) {
cannam@127 520 int ncur = sz->dims[dim].n;
cannam@127 521
cannam@127 522 na /= ncur;
cannam@127 523
cannam@127 524 for (j = 0; j < rounds; ++j) {
cannam@127 525 rarand(inA, N);
cannam@127 526
cannam@127 527 for (i = 0; i < vecn; ++i) {
cannam@127 528 rarolr(inB + i * n, inA + i*n, ncur, nb,na,
cannam@127 529 nfo->p->k[dim]);
cannam@127 530 }
cannam@127 531 dofft(nfo, inA, outA);
cannam@127 532 dofft(nfo, inB, outB);
cannam@127 533 for (i = 0; i < vecn; ++i)
cannam@127 534 raphase_shift(tmp + i * n, outA + i * n, ncur,
cannam@127 535 nb, na, d[dim].n0, d[dim].k0, d[dim].ts);
cannam@127 536 e = dmax(e, racmp(tmp, outB, N, "time shift", tol));
cannam@127 537 }
cannam@127 538
cannam@127 539 nb *= ncur;
cannam@127 540 }
cannam@127 541 return e;
cannam@127 542 }
cannam@127 543
cannam@127 544 /***********************************************************************/
cannam@127 545
cannam@127 546 void verify_r2r(bench_problem *p, int rounds, double tol, errors *e)
cannam@127 547 {
cannam@127 548 R *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
cannam@127 549 info nfo;
cannam@127 550 int n, vecn, N;
cannam@127 551 double impulse_amp = 1.0;
cannam@127 552 dim_stuff *d;
cannam@127 553 int i;
cannam@127 554
cannam@127 555 if (rounds == 0)
cannam@127 556 rounds = 20; /* default value */
cannam@127 557
cannam@127 558 n = tensor_sz(p->sz);
cannam@127 559 vecn = tensor_sz(p->vecsz);
cannam@127 560 N = n * vecn;
cannam@127 561
cannam@127 562 d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk);
cannam@127 563 for (i = 0; i < p->sz->rnk; ++i) {
cannam@127 564 int n0, i0, k0;
cannam@127 565 trigfun ti, ts;
cannam@127 566
cannam@127 567 d[i].n = n0 = p->sz->dims[i].n;
cannam@127 568 if (p->k[i] > R2R_DHT)
cannam@127 569 n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 :
cannam@127 570 (p->k[i] == R2R_RODFT00 ? 1 : 0)));
cannam@127 571
cannam@127 572 switch (p->k[i]) {
cannam@127 573 case R2R_R2HC:
cannam@127 574 i0 = k0 = 0;
cannam@127 575 ti = realhalf;
cannam@127 576 ts = coshalf;
cannam@127 577 break;
cannam@127 578 case R2R_DHT:
cannam@127 579 i0 = k0 = 0;
cannam@127 580 ti = unity;
cannam@127 581 ts = cos00;
cannam@127 582 break;
cannam@127 583 case R2R_HC2R:
cannam@127 584 i0 = k0 = 0;
cannam@127 585 ti = unity;
cannam@127 586 ts = cos00;
cannam@127 587 break;
cannam@127 588 case R2R_REDFT00:
cannam@127 589 i0 = k0 = 0;
cannam@127 590 ti = ts = cos00;
cannam@127 591 break;
cannam@127 592 case R2R_REDFT01:
cannam@127 593 i0 = k0 = 0;
cannam@127 594 ti = ts = cos01;
cannam@127 595 break;
cannam@127 596 case R2R_REDFT10:
cannam@127 597 i0 = k0 = 0;
cannam@127 598 ti = cos10; impulse_amp *= 2.0;
cannam@127 599 ts = cos00;
cannam@127 600 break;
cannam@127 601 case R2R_REDFT11:
cannam@127 602 i0 = k0 = 0;
cannam@127 603 ti = cos11; impulse_amp *= 2.0;
cannam@127 604 ts = cos01;
cannam@127 605 break;
cannam@127 606 case R2R_RODFT00:
cannam@127 607 i0 = k0 = 1;
cannam@127 608 ti = sin00; impulse_amp *= 2.0;
cannam@127 609 ts = cos00;
cannam@127 610 break;
cannam@127 611 case R2R_RODFT01:
cannam@127 612 i0 = 1; k0 = 0;
cannam@127 613 ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0;
cannam@127 614 ts = cos01;
cannam@127 615 break;
cannam@127 616 case R2R_RODFT10:
cannam@127 617 i0 = 0; k0 = 1;
cannam@127 618 ti = sin10; impulse_amp *= 2.0;
cannam@127 619 ts = cos00;
cannam@127 620 break;
cannam@127 621 case R2R_RODFT11:
cannam@127 622 i0 = k0 = 0;
cannam@127 623 ti = sin11; impulse_amp *= 2.0;
cannam@127 624 ts = cos01;
cannam@127 625 break;
cannam@127 626 default:
cannam@127 627 BENCH_ASSERT(0);
cannam@127 628 return;
cannam@127 629 }
cannam@127 630
cannam@127 631 d[i].n0 = n0;
cannam@127 632 d[i].i0 = i0;
cannam@127 633 d[i].k0 = k0;
cannam@127 634 d[i].ti = ti;
cannam@127 635 d[i].ts = ts;
cannam@127 636 }
cannam@127 637
cannam@127 638
cannam@127 639 inA = (R *) bench_malloc(N * sizeof(R));
cannam@127 640 inB = (R *) bench_malloc(N * sizeof(R));
cannam@127 641 inC = (R *) bench_malloc(N * sizeof(R));
cannam@127 642 outA = (R *) bench_malloc(N * sizeof(R));
cannam@127 643 outB = (R *) bench_malloc(N * sizeof(R));
cannam@127 644 outC = (R *) bench_malloc(N * sizeof(R));
cannam@127 645 tmp = (R *) bench_malloc(N * sizeof(R));
cannam@127 646
cannam@127 647 nfo.p = p;
cannam@127 648 nfo.probsz = p->sz;
cannam@127 649 nfo.totalsz = tensor_append(p->vecsz, nfo.probsz);
cannam@127 650 nfo.pckdsz = verify_pack(nfo.totalsz, 1);
cannam@127 651 nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz));
cannam@127 652
cannam@127 653 e->i = rimpulse(d, impulse_amp, n, vecn, &nfo,
cannam@127 654 inA, inB, inC, outA, outB, outC, tmp, rounds, tol);
cannam@127 655 e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol);
cannam@127 656 e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp,
cannam@127 657 rounds, tol, d);
cannam@127 658
cannam@127 659 /* grr, verify-lib.c:preserves_input() only works for complex */
cannam@127 660 if (!p->in_place && !p->destroy_input) {
cannam@127 661 bench_tensor *totalsz_swap, *pckdsz_swap;
cannam@127 662 totalsz_swap = tensor_copy_swapio(nfo.totalsz);
cannam@127 663 pckdsz_swap = tensor_copy_swapio(nfo.pckdsz);
cannam@127 664
cannam@127 665 for (i = 0; i < rounds; ++i) {
cannam@127 666 rarand(inA, N);
cannam@127 667 dofft(&nfo, inA, outB);
cannam@127 668 cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap);
cannam@127 669 racmp(inB, inA, N, "preserves_input", 0.0);
cannam@127 670 }
cannam@127 671
cannam@127 672 tensor_destroy(totalsz_swap);
cannam@127 673 tensor_destroy(pckdsz_swap);
cannam@127 674 }
cannam@127 675
cannam@127 676 tensor_destroy(nfo.totalsz);
cannam@127 677 tensor_destroy(nfo.pckdsz);
cannam@127 678 tensor_destroy(nfo.pckdvecsz);
cannam@127 679 bench_free(tmp);
cannam@127 680 bench_free(outC);
cannam@127 681 bench_free(outB);
cannam@127 682 bench_free(outA);
cannam@127 683 bench_free(inC);
cannam@127 684 bench_free(inB);
cannam@127 685 bench_free(inA);
cannam@127 686 bench_free(d);
cannam@127 687 }
cannam@127 688
cannam@127 689
cannam@127 690 typedef struct {
cannam@127 691 dofft_closure k;
cannam@127 692 bench_problem *p;
cannam@127 693 int n0;
cannam@127 694 } dofft_r2r_closure;
cannam@127 695
cannam@127 696 static void cpyr1(int n, R *in, int is, R *out, int os, R scale)
cannam@127 697 {
cannam@127 698 int i;
cannam@127 699 for (i = 0; i < n; ++i)
cannam@127 700 out[i * os] = in[i * is] * scale;
cannam@127 701 }
cannam@127 702
cannam@127 703 static void mke00(C *a, int n, int c)
cannam@127 704 {
cannam@127 705 int i;
cannam@127 706 for (i = 1; i + i < n; ++i)
cannam@127 707 a[n - i][c] = a[i][c];
cannam@127 708 }
cannam@127 709
cannam@127 710 static void mkre00(C *a, int n)
cannam@127 711 {
cannam@127 712 mkreal(a, n);
cannam@127 713 mke00(a, n, 0);
cannam@127 714 }
cannam@127 715
cannam@127 716 static void mkimag(C *a, int n)
cannam@127 717 {
cannam@127 718 int i;
cannam@127 719 for (i = 0; i < n; ++i)
cannam@127 720 c_re(a[i]) = 0.0;
cannam@127 721 }
cannam@127 722
cannam@127 723 static void mko00(C *a, int n, int c)
cannam@127 724 {
cannam@127 725 int i;
cannam@127 726 a[0][c] = 0.0;
cannam@127 727 for (i = 1; i + i < n; ++i)
cannam@127 728 a[n - i][c] = -a[i][c];
cannam@127 729 if (i + i == n)
cannam@127 730 a[i][c] = 0.0;
cannam@127 731 }
cannam@127 732
cannam@127 733 static void mkro00(C *a, int n)
cannam@127 734 {
cannam@127 735 mkreal(a, n);
cannam@127 736 mko00(a, n, 0);
cannam@127 737 }
cannam@127 738
cannam@127 739 static void mkio00(C *a, int n)
cannam@127 740 {
cannam@127 741 mkimag(a, n);
cannam@127 742 mko00(a, n, 1);
cannam@127 743 }
cannam@127 744
cannam@127 745 static void mkre01(C *a, int n) /* n should be be multiple of 4 */
cannam@127 746 {
cannam@127 747 R a0;
cannam@127 748 a0 = c_re(a[0]);
cannam@127 749 mko00(a, n/2, 0);
cannam@127 750 c_re(a[n/2]) = -(c_re(a[0]) = a0);
cannam@127 751 mkre00(a, n);
cannam@127 752 }
cannam@127 753
cannam@127 754 static void mkro01(C *a, int n) /* n should be be multiple of 4 */
cannam@127 755 {
cannam@127 756 c_re(a[0]) = c_im(a[0]) = 0.0;
cannam@127 757 mkre00(a, n/2);
cannam@127 758 mkro00(a, n);
cannam@127 759 }
cannam@127 760
cannam@127 761 static void mkoddonly(C *a, int n)
cannam@127 762 {
cannam@127 763 int i;
cannam@127 764 for (i = 0; i < n; i += 2)
cannam@127 765 c_re(a[i]) = c_im(a[i]) = 0.0;
cannam@127 766 }
cannam@127 767
cannam@127 768 static void mkre10(C *a, int n)
cannam@127 769 {
cannam@127 770 mkoddonly(a, n);
cannam@127 771 mkre00(a, n);
cannam@127 772 }
cannam@127 773
cannam@127 774 static void mkio10(C *a, int n)
cannam@127 775 {
cannam@127 776 mkoddonly(a, n);
cannam@127 777 mkio00(a, n);
cannam@127 778 }
cannam@127 779
cannam@127 780 static void mkre11(C *a, int n)
cannam@127 781 {
cannam@127 782 mkoddonly(a, n);
cannam@127 783 mko00(a, n/2, 0);
cannam@127 784 mkre00(a, n);
cannam@127 785 }
cannam@127 786
cannam@127 787 static void mkro11(C *a, int n)
cannam@127 788 {
cannam@127 789 mkoddonly(a, n);
cannam@127 790 mkre00(a, n/2);
cannam@127 791 mkro00(a, n);
cannam@127 792 }
cannam@127 793
cannam@127 794 static void mkio11(C *a, int n)
cannam@127 795 {
cannam@127 796 mkoddonly(a, n);
cannam@127 797 mke00(a, n/2, 1);
cannam@127 798 mkio00(a, n);
cannam@127 799 }
cannam@127 800
cannam@127 801 static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
cannam@127 802 {
cannam@127 803 dofft_r2r_closure *k = (dofft_r2r_closure *)k_;
cannam@127 804 bench_problem *p = k->p;
cannam@127 805 bench_real *ri, *ro;
cannam@127 806 int n, is, os;
cannam@127 807
cannam@127 808 n = p->sz->dims[0].n;
cannam@127 809 is = p->sz->dims[0].is;
cannam@127 810 os = p->sz->dims[0].os;
cannam@127 811
cannam@127 812 ri = (bench_real *) p->in;
cannam@127 813 ro = (bench_real *) p->out;
cannam@127 814
cannam@127 815 switch (p->k[0]) {
cannam@127 816 case R2R_R2HC:
cannam@127 817 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
cannam@127 818 break;
cannam@127 819 case R2R_HC2R:
cannam@127 820 cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0);
cannam@127 821 cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0);
cannam@127 822 break;
cannam@127 823 case R2R_REDFT00:
cannam@127 824 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
cannam@127 825 break;
cannam@127 826 case R2R_RODFT00:
cannam@127 827 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
cannam@127 828 break;
cannam@127 829 case R2R_REDFT01:
cannam@127 830 cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
cannam@127 831 break;
cannam@127 832 case R2R_REDFT10:
cannam@127 833 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
cannam@127 834 break;
cannam@127 835 case R2R_RODFT01:
cannam@127 836 cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
cannam@127 837 break;
cannam@127 838 case R2R_RODFT10:
cannam@127 839 cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0);
cannam@127 840 break;
cannam@127 841 case R2R_REDFT11:
cannam@127 842 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
cannam@127 843 break;
cannam@127 844 case R2R_RODFT11:
cannam@127 845 cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
cannam@127 846 break;
cannam@127 847 default:
cannam@127 848 BENCH_ASSERT(0); /* not yet implemented */
cannam@127 849 }
cannam@127 850
cannam@127 851 after_problem_rcopy_from(p, ri);
cannam@127 852 doit(1, p);
cannam@127 853 after_problem_rcopy_to(p, ro);
cannam@127 854
cannam@127 855 switch (p->k[0]) {
cannam@127 856 case R2R_R2HC:
cannam@127 857 if (k->k.recopy_input)
cannam@127 858 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cannam@127 859 cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0);
cannam@127 860 cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0);
cannam@127 861 c_im(out[0]) = 0.0;
cannam@127 862 if (n % 2 == 0)
cannam@127 863 c_im(out[n/2]) = 0.0;
cannam@127 864 mkhermitian1(out, n);
cannam@127 865 break;
cannam@127 866 case R2R_HC2R:
cannam@127 867 if (k->k.recopy_input) {
cannam@127 868 cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0);
cannam@127 869 cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0);
cannam@127 870 }
cannam@127 871 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
cannam@127 872 mkreal(out, n);
cannam@127 873 break;
cannam@127 874 case R2R_REDFT00:
cannam@127 875 if (k->k.recopy_input)
cannam@127 876 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cannam@127 877 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
cannam@127 878 mkre00(out, k->n0);
cannam@127 879 break;
cannam@127 880 case R2R_RODFT00:
cannam@127 881 if (k->k.recopy_input)
cannam@127 882 cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0);
cannam@127 883 cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0);
cannam@127 884 mkio00(out, k->n0);
cannam@127 885 break;
cannam@127 886 case R2R_REDFT01:
cannam@127 887 if (k->k.recopy_input)
cannam@127 888 cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cannam@127 889 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
cannam@127 890 mkre10(out, k->n0);
cannam@127 891 break;
cannam@127 892 case R2R_REDFT10:
cannam@127 893 if (k->k.recopy_input)
cannam@127 894 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
cannam@127 895 cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
cannam@127 896 mkre01(out, k->n0);
cannam@127 897 break;
cannam@127 898 case R2R_RODFT01:
cannam@127 899 if (k->k.recopy_input)
cannam@127 900 cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0);
cannam@127 901 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
cannam@127 902 mkio10(out, k->n0);
cannam@127 903 break;
cannam@127 904 case R2R_RODFT10:
cannam@127 905 if (k->k.recopy_input)
cannam@127 906 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
cannam@127 907 cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0);
cannam@127 908 mkro01(out, k->n0);
cannam@127 909 break;
cannam@127 910 case R2R_REDFT11:
cannam@127 911 if (k->k.recopy_input)
cannam@127 912 cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
cannam@127 913 cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
cannam@127 914 mkre11(out, k->n0);
cannam@127 915 break;
cannam@127 916 case R2R_RODFT11:
cannam@127 917 if (k->k.recopy_input)
cannam@127 918 cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
cannam@127 919 cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
cannam@127 920 mkio11(out, k->n0);
cannam@127 921 break;
cannam@127 922 default:
cannam@127 923 BENCH_ASSERT(0); /* not yet implemented */
cannam@127 924 }
cannam@127 925 }
cannam@127 926
cannam@127 927 void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds,
cannam@127 928 double t[6])
cannam@127 929 {
cannam@127 930 dofft_r2r_closure k;
cannam@127 931 int n, n0 = 1;
cannam@127 932 C *a, *b;
cannam@127 933 aconstrain constrain = 0;
cannam@127 934
cannam@127 935 BENCH_ASSERT(p->kind == PROBLEM_R2R);
cannam@127 936 BENCH_ASSERT(p->sz->rnk == 1);
cannam@127 937 BENCH_ASSERT(p->vecsz->rnk == 0);
cannam@127 938
cannam@127 939 k.k.apply = r2r_apply;
cannam@127 940 k.k.recopy_input = 0;
cannam@127 941 k.p = p;
cannam@127 942 n = tensor_sz(p->sz);
cannam@127 943
cannam@127 944 switch (p->k[0]) {
cannam@127 945 case R2R_R2HC: constrain = mkreal; n0 = n; break;
cannam@127 946 case R2R_HC2R: constrain = mkhermitian1; n0 = n; break;
cannam@127 947 case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break;
cannam@127 948 case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break;
cannam@127 949 case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break;
cannam@127 950 case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break;
cannam@127 951 case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break;
cannam@127 952 case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break;
cannam@127 953 case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break;
cannam@127 954 case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break;
cannam@127 955 default: BENCH_ASSERT(0); /* not yet implemented */
cannam@127 956 }
cannam@127 957 k.n0 = n0;
cannam@127 958
cannam@127 959 a = (C *) bench_malloc(n0 * sizeof(C));
cannam@127 960 b = (C *) bench_malloc(n0 * sizeof(C));
cannam@127 961 accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t);
cannam@127 962 bench_free(b);
cannam@127 963 bench_free(a);
cannam@127 964 }