annotate src/fftw-3.3.5/libbench2/verify-dft.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 #include "verify.h"
cannam@127 23
cannam@127 24 /* copy A into B, using output stride of A and input stride of B */
cannam@127 25 typedef struct {
cannam@127 26 dotens2_closure k;
cannam@127 27 R *ra; R *ia;
cannam@127 28 R *rb; R *ib;
cannam@127 29 int scalea, scaleb;
cannam@127 30 } cpy_closure;
cannam@127 31
cannam@127 32 static void cpy0(dotens2_closure *k_,
cannam@127 33 int indxa, int ondxa, int indxb, int ondxb)
cannam@127 34 {
cannam@127 35 cpy_closure *k = (cpy_closure *)k_;
cannam@127 36 k->rb[indxb * k->scaleb] = k->ra[ondxa * k->scalea];
cannam@127 37 k->ib[indxb * k->scaleb] = k->ia[ondxa * k->scalea];
cannam@127 38 UNUSED(indxa); UNUSED(ondxb);
cannam@127 39 }
cannam@127 40
cannam@127 41 static void cpy(R *ra, R *ia, const bench_tensor *sza, int scalea,
cannam@127 42 R *rb, R *ib, const bench_tensor *szb, int scaleb)
cannam@127 43 {
cannam@127 44 cpy_closure k;
cannam@127 45 k.k.apply = cpy0;
cannam@127 46 k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
cannam@127 47 k.scalea = scalea; k.scaleb = scaleb;
cannam@127 48 bench_dotens2(sza, szb, &k.k);
cannam@127 49 }
cannam@127 50
cannam@127 51 typedef struct {
cannam@127 52 dofft_closure k;
cannam@127 53 bench_problem *p;
cannam@127 54 } dofft_dft_closure;
cannam@127 55
cannam@127 56 static void dft_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
cannam@127 57 {
cannam@127 58 dofft_dft_closure *k = (dofft_dft_closure *)k_;
cannam@127 59 bench_problem *p = k->p;
cannam@127 60 bench_tensor *totalsz, *pckdsz;
cannam@127 61 bench_tensor *totalsz_swap, *pckdsz_swap;
cannam@127 62 bench_real *ri, *ii, *ro, *io;
cannam@127 63 int totalscale;
cannam@127 64
cannam@127 65 totalsz = tensor_append(p->vecsz, p->sz);
cannam@127 66 pckdsz = verify_pack(totalsz, 2);
cannam@127 67 ri = (bench_real *) p->in;
cannam@127 68 ro = (bench_real *) p->out;
cannam@127 69
cannam@127 70 totalsz_swap = tensor_copy_swapio(totalsz);
cannam@127 71 pckdsz_swap = tensor_copy_swapio(pckdsz);
cannam@127 72
cannam@127 73 /* confusion: the stride is the distance between complex elements
cannam@127 74 when using interleaved format, but it is the distance between
cannam@127 75 real elements when using split format */
cannam@127 76 if (p->split) {
cannam@127 77 ii = p->ini ? (bench_real *) p->ini : ri + p->iphyssz;
cannam@127 78 io = p->outi ? (bench_real *) p->outi : ro + p->ophyssz;
cannam@127 79 totalscale = 1;
cannam@127 80 } else {
cannam@127 81 ii = p->ini ? (bench_real *) p->ini : ri + 1;
cannam@127 82 io = p->outi ? (bench_real *) p->outi : ro + 1;
cannam@127 83 totalscale = 2;
cannam@127 84 }
cannam@127 85
cannam@127 86 cpy(&c_re(in[0]), &c_im(in[0]), pckdsz, 1,
cannam@127 87 ri, ii, totalsz, totalscale);
cannam@127 88 after_problem_ccopy_from(p, ri, ii);
cannam@127 89 doit(1, p);
cannam@127 90 after_problem_ccopy_to(p, ro, io);
cannam@127 91 if (k->k.recopy_input)
cannam@127 92 cpy(ri, ii, totalsz_swap, totalscale,
cannam@127 93 &c_re(in[0]), &c_im(in[0]), pckdsz_swap, 1);
cannam@127 94 cpy(ro, io, totalsz, totalscale,
cannam@127 95 &c_re(out[0]), &c_im(out[0]), pckdsz, 1);
cannam@127 96
cannam@127 97 tensor_destroy(totalsz);
cannam@127 98 tensor_destroy(pckdsz);
cannam@127 99 tensor_destroy(totalsz_swap);
cannam@127 100 tensor_destroy(pckdsz_swap);
cannam@127 101 }
cannam@127 102
cannam@127 103 void verify_dft(bench_problem *p, int rounds, double tol, errors *e)
cannam@127 104 {
cannam@127 105 C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
cannam@127 106 int n, vecn, N;
cannam@127 107 dofft_dft_closure k;
cannam@127 108
cannam@127 109 BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
cannam@127 110
cannam@127 111 k.k.apply = dft_apply;
cannam@127 112 k.k.recopy_input = 0;
cannam@127 113 k.p = p;
cannam@127 114
cannam@127 115 if (rounds == 0)
cannam@127 116 rounds = 20; /* default value */
cannam@127 117
cannam@127 118 n = tensor_sz(p->sz);
cannam@127 119 vecn = tensor_sz(p->vecsz);
cannam@127 120 N = n * vecn;
cannam@127 121
cannam@127 122 inA = (C *) bench_malloc(N * sizeof(C));
cannam@127 123 inB = (C *) bench_malloc(N * sizeof(C));
cannam@127 124 inC = (C *) bench_malloc(N * sizeof(C));
cannam@127 125 outA = (C *) bench_malloc(N * sizeof(C));
cannam@127 126 outB = (C *) bench_malloc(N * sizeof(C));
cannam@127 127 outC = (C *) bench_malloc(N * sizeof(C));
cannam@127 128 tmp = (C *) bench_malloc(N * sizeof(C));
cannam@127 129
cannam@127 130 e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC,
cannam@127 131 tmp, rounds, tol);
cannam@127 132 e->l = linear(&k.k, 0, N, inA, inB, inC, outA, outB, outC,
cannam@127 133 tmp, rounds, tol);
cannam@127 134
cannam@127 135 e->s = 0.0;
cannam@127 136 e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
cannam@127 137 inA, inB, outA, outB,
cannam@127 138 tmp, rounds, tol, TIME_SHIFT));
cannam@127 139 e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
cannam@127 140 inA, inB, outA, outB,
cannam@127 141 tmp, rounds, tol, FREQ_SHIFT));
cannam@127 142
cannam@127 143 if (!p->in_place && !p->destroy_input)
cannam@127 144 preserves_input(&k.k, 0, N, inA, inB, outB, rounds);
cannam@127 145
cannam@127 146 bench_free(tmp);
cannam@127 147 bench_free(outC);
cannam@127 148 bench_free(outB);
cannam@127 149 bench_free(outA);
cannam@127 150 bench_free(inC);
cannam@127 151 bench_free(inB);
cannam@127 152 bench_free(inA);
cannam@127 153 }
cannam@127 154
cannam@127 155
cannam@127 156 void accuracy_dft(bench_problem *p, int rounds, int impulse_rounds,
cannam@127 157 double t[6])
cannam@127 158 {
cannam@127 159 dofft_dft_closure k;
cannam@127 160 int n;
cannam@127 161 C *a, *b;
cannam@127 162
cannam@127 163 BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
cannam@127 164 BENCH_ASSERT(p->sz->rnk == 1);
cannam@127 165 BENCH_ASSERT(p->vecsz->rnk == 0);
cannam@127 166
cannam@127 167 k.k.apply = dft_apply;
cannam@127 168 k.k.recopy_input = 0;
cannam@127 169 k.p = p;
cannam@127 170 n = tensor_sz(p->sz);
cannam@127 171
cannam@127 172 a = (C *) bench_malloc(n * sizeof(C));
cannam@127 173 b = (C *) bench_malloc(n * sizeof(C));
cannam@127 174 accuracy_test(&k.k, 0, p->sign, n, a, b, rounds, impulse_rounds, t);
cannam@127 175 bench_free(b);
cannam@127 176 bench_free(a);
cannam@127 177 }