annotate src/fftw-3.3.5/genfft/trig.ml @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 (*
cannam@127 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
cannam@127 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 5 *
cannam@127 6 * This program is free software; you can redistribute it and/or modify
cannam@127 7 * it under the terms of the GNU General Public License as published by
cannam@127 8 * the Free Software Foundation; either version 2 of the License, or
cannam@127 9 * (at your option) any later version.
cannam@127 10 *
cannam@127 11 * This program is distributed in the hope that it will be useful,
cannam@127 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 14 * GNU General Public License for more details.
cannam@127 15 *
cannam@127 16 * You should have received a copy of the GNU General Public License
cannam@127 17 * along with this program; if not, write to the Free Software
cannam@127 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 19 *
cannam@127 20 *)
cannam@127 21
cannam@127 22 (* trigonometric transforms *)
cannam@127 23 open Util
cannam@127 24
cannam@127 25 (* DFT of real input *)
cannam@127 26 let rdft sign n input =
cannam@127 27 Fft.dft sign n (Complex.real @@ input)
cannam@127 28
cannam@127 29 (* DFT of hermitian input *)
cannam@127 30 let hdft sign n input =
cannam@127 31 Fft.dft sign n (Complex.hermitian n input)
cannam@127 32
cannam@127 33 (* DFT real transform of vectors of two real numbers,
cannam@127 34 multiplication by (NaN I), and summation *)
cannam@127 35 let dft_via_rdft sign n input =
cannam@127 36 let f = rdft sign n input
cannam@127 37 in fun i ->
cannam@127 38 Complex.plus
cannam@127 39 [Complex.real (f i);
cannam@127 40 Complex.times (Complex.nan Expr.I) (Complex.imag (f i))]
cannam@127 41
cannam@127 42 (* Discrete Hartley Transform *)
cannam@127 43 let dht sign n input =
cannam@127 44 let f = Fft.dft sign n (Complex.real @@ input) in
cannam@127 45 (fun i ->
cannam@127 46 Complex.plus [Complex.real (f i); Complex.imag (f i)])
cannam@127 47
cannam@127 48 let trigI n input =
cannam@127 49 let twon = 2 * n in
cannam@127 50 let input' = Complex.hermitian twon input
cannam@127 51 in
cannam@127 52 Fft.dft 1 twon input'
cannam@127 53
cannam@127 54 let interleave_zero input = fun i ->
cannam@127 55 if (i mod 2) == 0
cannam@127 56 then Complex.zero
cannam@127 57 else
cannam@127 58 input ((i - 1) / 2)
cannam@127 59
cannam@127 60 let trigII n input =
cannam@127 61 let fourn = 4 * n in
cannam@127 62 let input' = Complex.hermitian fourn (interleave_zero input)
cannam@127 63 in
cannam@127 64 Fft.dft 1 fourn input'
cannam@127 65
cannam@127 66 let trigIII n input =
cannam@127 67 let fourn = 4 * n in
cannam@127 68 let twon = 2 * n in
cannam@127 69 let input' = Complex.hermitian fourn
cannam@127 70 (fun i ->
cannam@127 71 if (i == 0) then
cannam@127 72 Complex.real (input 0)
cannam@127 73 else if (i == twon) then
cannam@127 74 Complex.uminus (Complex.real (input 0))
cannam@127 75 else
cannam@127 76 Complex.antihermitian twon input i)
cannam@127 77 in
cannam@127 78 let dft = Fft.dft 1 fourn input'
cannam@127 79 in fun k -> dft (2 * k + 1)
cannam@127 80
cannam@127 81 let zero_extend n input = fun i ->
cannam@127 82 if (i >= 0 && i < n)
cannam@127 83 then input i
cannam@127 84 else Complex.zero
cannam@127 85
cannam@127 86 let trigIV n input =
cannam@127 87 let fourn = 4 * n
cannam@127 88 and eightn = 8 * n in
cannam@127 89 let input' = Complex.hermitian eightn
cannam@127 90 (zero_extend fourn (Complex.antihermitian fourn
cannam@127 91 (interleave_zero input)))
cannam@127 92 in
cannam@127 93 let dft = Fft.dft 1 eightn input'
cannam@127 94 in fun k -> dft (2 * k + 1)
cannam@127 95
cannam@127 96 let make_dct scale nshift trig =
cannam@127 97 fun n input ->
cannam@127 98 trig (n - nshift) (Complex.real @@ (Complex.times scale) @@
cannam@127 99 (zero_extend n input))
cannam@127 100 (*
cannam@127 101 * DCT-I: y[k] = sum x[j] cos(pi * j * k / n)
cannam@127 102 *)
cannam@127 103 let dctI = make_dct Complex.one 1 trigI
cannam@127 104
cannam@127 105 (*
cannam@127 106 * DCT-II: y[k] = sum x[j] cos(pi * (j + 1/2) * k / n)
cannam@127 107 *)
cannam@127 108 let dctII = make_dct Complex.one 0 trigII
cannam@127 109
cannam@127 110 (*
cannam@127 111 * DCT-III: y[k] = sum x[j] cos(pi * j * (k + 1/2) / n)
cannam@127 112 *)
cannam@127 113 let dctIII = make_dct Complex.half 0 trigIII
cannam@127 114
cannam@127 115 (*
cannam@127 116 * DCT-IV y[k] = sum x[j] cos(pi * (j + 1/2) * (k + 1/2) / n)
cannam@127 117 *)
cannam@127 118 let dctIV = make_dct Complex.half 0 trigIV
cannam@127 119
cannam@127 120 let shift s input = fun i -> input (i - s)
cannam@127 121
cannam@127 122 (* DST-x input := TRIG-x (input / i) *)
cannam@127 123 let make_dst scale nshift kshift jshift trig =
cannam@127 124 fun n input ->
cannam@127 125 Complex.real @@
cannam@127 126 (shift (- jshift)
cannam@127 127 (trig (n + nshift) (Complex.uminus @@
cannam@127 128 (Complex.times Complex.i) @@
cannam@127 129 (Complex.times scale) @@
cannam@127 130 Complex.real @@
cannam@127 131 (shift kshift (zero_extend n input)))))
cannam@127 132
cannam@127 133 (*
cannam@127 134 * DST-I: y[k] = sum x[j] sin(pi * j * k / n)
cannam@127 135 *)
cannam@127 136 let dstI = make_dst Complex.one 1 1 1 trigI
cannam@127 137
cannam@127 138 (*
cannam@127 139 * DST-II: y[k] = sum x[j] sin(pi * (j + 1/2) * k / n)
cannam@127 140 *)
cannam@127 141 let dstII = make_dst Complex.one 0 0 1 trigII
cannam@127 142
cannam@127 143 (*
cannam@127 144 * DST-III: y[k] = sum x[j] sin(pi * j * (k + 1/2) / n)
cannam@127 145 *)
cannam@127 146 let dstIII = make_dst Complex.half 0 1 0 trigIII
cannam@127 147
cannam@127 148 (*
cannam@127 149 * DST-IV y[k] = sum x[j] sin(pi * (j + 1/2) * (k + 1/2) / n)
cannam@127 150 *)
cannam@127 151 let dstIV = make_dst Complex.half 0 0 0 trigIV
cannam@127 152