annotate src/fftw-3.3.5/genfft/genutil.ml @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 (*
cannam@127 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
cannam@127 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 5 *
cannam@127 6 * This program is free software; you can redistribute it and/or modify
cannam@127 7 * it under the terms of the GNU General Public License as published by
cannam@127 8 * the Free Software Foundation; either version 2 of the License, or
cannam@127 9 * (at your option) any later version.
cannam@127 10 *
cannam@127 11 * This program is distributed in the hope that it will be useful,
cannam@127 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 14 * GNU General Public License for more details.
cannam@127 15 *
cannam@127 16 * You should have received a copy of the GNU General Public License
cannam@127 17 * along with this program; if not, write to the Free Software
cannam@127 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 19 *
cannam@127 20 *)
cannam@127 21
cannam@127 22 (* utilities common to all generators *)
cannam@127 23 open Util
cannam@127 24
cannam@127 25 let choose_simd a b = if !Simdmagic.simd_mode then b else a
cannam@127 26
cannam@127 27 let unique_array n = array n (fun _ -> Unique.make ())
cannam@127 28 let unique_array_c n =
cannam@127 29 array n (fun _ ->
cannam@127 30 (Unique.make (), Unique.make ()))
cannam@127 31
cannam@127 32 let unique_v_array_c veclen n =
cannam@127 33 array veclen (fun _ ->
cannam@127 34 unique_array_c n)
cannam@127 35
cannam@127 36 let locative_array_c n rarr iarr loc vs =
cannam@127 37 array n (fun i ->
cannam@127 38 let klass = Unique.make () in
cannam@127 39 let (rloc, iloc) = loc i in
cannam@127 40 (Variable.make_locative rloc klass rarr i vs,
cannam@127 41 Variable.make_locative iloc klass iarr i vs))
cannam@127 42
cannam@127 43 let locative_v_array_c veclen n rarr iarr loc vs =
cannam@127 44 array veclen (fun v ->
cannam@127 45 array n (fun i ->
cannam@127 46 let klass = Unique.make () in
cannam@127 47 let (rloc, iloc) = loc v i in
cannam@127 48 (Variable.make_locative rloc klass (rarr v) i vs,
cannam@127 49 Variable.make_locative iloc klass (iarr v) i vs)))
cannam@127 50
cannam@127 51 let temporary_array n =
cannam@127 52 array n (fun i -> Variable.make_temporary ())
cannam@127 53
cannam@127 54 let temporary_array_c n =
cannam@127 55 let tmpr = temporary_array n
cannam@127 56 and tmpi = temporary_array n
cannam@127 57 in
cannam@127 58 array n (fun i -> (tmpr i, tmpi i))
cannam@127 59
cannam@127 60 let temporary_v_array_c veclen n =
cannam@127 61 array veclen (fun v -> temporary_array_c n)
cannam@127 62
cannam@127 63 let temporary_array_c n =
cannam@127 64 let tmpr = temporary_array n
cannam@127 65 and tmpi = temporary_array n
cannam@127 66 in
cannam@127 67 array n (fun i -> (tmpr i, tmpi i))
cannam@127 68
cannam@127 69 let load_c (vr, vi) = Complex.make (Expr.Load vr, Expr.Load vi)
cannam@127 70 let load_r (vr, vi) = Complex.make (Expr.Load vr, Expr.Num (Number.zero))
cannam@127 71
cannam@127 72 let twiddle_array nt w =
cannam@127 73 array (nt/2) (fun i ->
cannam@127 74 let stride = choose_simd (C.SInteger 1) (C.SConst "TWVL")
cannam@127 75 and klass = Unique.make () in
cannam@127 76 let (refr, refi) = (C.array_subscript w stride (2 * i),
cannam@127 77 C.array_subscript w stride (2 * i + 1))
cannam@127 78 in
cannam@127 79 let (kr, ki) = (Variable.make_constant klass refr,
cannam@127 80 Variable.make_constant klass refi)
cannam@127 81 in
cannam@127 82 load_c (kr, ki))
cannam@127 83
cannam@127 84
cannam@127 85 let load_array_c n var = array n (fun i -> load_c (var i))
cannam@127 86 let load_array_r n var = array n (fun i -> load_r (var i))
cannam@127 87 let load_array_hc n var =
cannam@127 88 array n (fun i ->
cannam@127 89 if (i < n - i) then
cannam@127 90 load_c (var i)
cannam@127 91 else if (i > n - i) then
cannam@127 92 Complex.times Complex.i (load_c (var (n - i)))
cannam@127 93 else
cannam@127 94 load_r (var i))
cannam@127 95
cannam@127 96 let load_v_array_c veclen n var =
cannam@127 97 array veclen (fun v -> load_array_c n (var v))
cannam@127 98
cannam@127 99 let store_c (vr, vi) x = [Complex.store_real vr x; Complex.store_imag vi x]
cannam@127 100 let store_r (vr, vi) x = Complex.store_real vr x
cannam@127 101 let store_i (vr, vi) x = Complex.store_imag vi x
cannam@127 102
cannam@127 103 let assign_array_c n dst src =
cannam@127 104 List.flatten
cannam@127 105 (rmap (iota n)
cannam@127 106 (fun i ->
cannam@127 107 let (ar, ai) = Complex.assign (dst i) (src i)
cannam@127 108 in [ar; ai]))
cannam@127 109 let assign_v_array_c veclen n dst src =
cannam@127 110 List.flatten
cannam@127 111 (rmap (iota veclen)
cannam@127 112 (fun v ->
cannam@127 113 assign_array_c n (dst v) (src v)))
cannam@127 114
cannam@127 115 let vassign_v_array_c veclen n dst src =
cannam@127 116 List.flatten
cannam@127 117 (rmap (iota n) (fun i ->
cannam@127 118 List.flatten
cannam@127 119 (rmap (iota veclen)
cannam@127 120 (fun v ->
cannam@127 121 let (ar, ai) = Complex.assign (dst v i) (src v i)
cannam@127 122 in [ar; ai]))))
cannam@127 123
cannam@127 124 let store_array_r n dst src =
cannam@127 125 rmap (iota n)
cannam@127 126 (fun i -> store_r (dst i) (src i))
cannam@127 127
cannam@127 128 let store_array_c n dst src =
cannam@127 129 List.flatten
cannam@127 130 (rmap (iota n)
cannam@127 131 (fun i -> store_c (dst i) (src i)))
cannam@127 132
cannam@127 133 let store_array_hc n dst src =
cannam@127 134 List.flatten
cannam@127 135 (rmap (iota n)
cannam@127 136 (fun i ->
cannam@127 137 if (i < n - i) then
cannam@127 138 store_c (dst i) (src i)
cannam@127 139 else if (i > n - i) then
cannam@127 140 []
cannam@127 141 else
cannam@127 142 [store_r (dst i) (Complex.real (src i))]))
cannam@127 143
cannam@127 144
cannam@127 145 let store_v_array_c veclen n dst src =
cannam@127 146 List.flatten
cannam@127 147 (rmap (iota veclen)
cannam@127 148 (fun v ->
cannam@127 149 store_array_c n (dst v) (src v)))
cannam@127 150
cannam@127 151
cannam@127 152 let elementwise f n a = array n (fun i -> f (a i))
cannam@127 153 let conj_array_c = elementwise Complex.conj
cannam@127 154 let real_array_c = elementwise Complex.real
cannam@127 155 let imag_array_c = elementwise Complex.imag
cannam@127 156
cannam@127 157 let elementwise_v f veclen n a =
cannam@127 158 array veclen (fun v ->
cannam@127 159 array n (fun i -> f (a v i)))
cannam@127 160 let conj_v_array_c = elementwise_v Complex.conj
cannam@127 161 let real_v_array_c = elementwise_v Complex.real
cannam@127 162 let imag_v_array_c = elementwise_v Complex.imag
cannam@127 163
cannam@127 164
cannam@127 165 let transpose f i j = f j i
cannam@127 166 let symmetrize f i j = if i <= j then f i j else f j i
cannam@127 167
cannam@127 168 (* utilities for command-line parsing *)
cannam@127 169 let standard_arg_parse_fail _ = failwith "too many arguments"
cannam@127 170
cannam@127 171 let dump_dag alist =
cannam@127 172 let fnam = !Magic.dag_dump_file in
cannam@127 173 if (String.length fnam > 0) then
cannam@127 174 let ochan = open_out fnam in
cannam@127 175 begin
cannam@127 176 To_alist.dump (output_string ochan) alist;
cannam@127 177 close_out ochan;
cannam@127 178 end
cannam@127 179
cannam@127 180 let dump_alist alist =
cannam@127 181 let fnam = !Magic.alist_dump_file in
cannam@127 182 if (String.length fnam > 0) then
cannam@127 183 let ochan = open_out fnam in
cannam@127 184 begin
cannam@127 185 Expr.dump (output_string ochan) alist;
cannam@127 186 close_out ochan;
cannam@127 187 end
cannam@127 188
cannam@127 189 let dump_asched asched =
cannam@127 190 let fnam = !Magic.asched_dump_file in
cannam@127 191 if (String.length fnam > 0) then
cannam@127 192 let ochan = open_out fnam in
cannam@127 193 begin
cannam@127 194 Annotate.dump (output_string ochan) asched;
cannam@127 195 close_out ochan;
cannam@127 196 end
cannam@127 197
cannam@127 198 (* utilities for optimization *)
cannam@127 199 let standard_scheduler dag =
cannam@127 200 let optim = Algsimp.algsimp dag in
cannam@127 201 let alist = To_alist.to_assignments optim in
cannam@127 202 let _ = dump_alist alist in
cannam@127 203 let _ = dump_dag alist in
cannam@127 204 if !Magic.precompute_twiddles then
cannam@127 205 Schedule.isolate_precomputations_and_schedule alist
cannam@127 206 else
cannam@127 207 Schedule.schedule alist
cannam@127 208
cannam@127 209 let standard_optimizer dag =
cannam@127 210 let sched = standard_scheduler dag in
cannam@127 211 let annot = Annotate.annotate [] sched in
cannam@127 212 let _ = dump_asched annot in
cannam@127 213 annot
cannam@127 214
cannam@127 215 let size = ref None
cannam@127 216 let sign = ref (-1)
cannam@127 217
cannam@127 218 let speclist = [
cannam@127 219 "-n", Arg.Int(fun i -> size := Some i), " generate a codelet of size <n>";
cannam@127 220 "-sign",
cannam@127 221 Arg.Int(fun i ->
cannam@127 222 if (i > 0) then
cannam@127 223 sign := 1
cannam@127 224 else
cannam@127 225 sign := (-1)),
cannam@127 226 " sign of transform";
cannam@127 227 ]
cannam@127 228
cannam@127 229 let check_size () =
cannam@127 230 match !size with
cannam@127 231 | Some i -> i
cannam@127 232 | None -> failwith "must specify -n"
cannam@127 233
cannam@127 234 let expand_name name = if name = "" then "noname" else name
cannam@127 235
cannam@127 236 let declare_register_fcn name =
cannam@127 237 if name = "" then
cannam@127 238 "void NAME(planner *p)\n"
cannam@127 239 else
cannam@127 240 "void " ^ (choose_simd "X" "XSIMD") ^
cannam@127 241 "(codelet_" ^ name ^ ")(planner *p)\n"
cannam@127 242
cannam@127 243 let stringify name =
cannam@127 244 if name = "" then "STRINGIZE(NAME)" else
cannam@127 245 choose_simd ("\"" ^ name ^ "\"")
cannam@127 246 ("XSIMD_STRING(\"" ^ name ^ "\")")
cannam@127 247
cannam@127 248 let parse user_speclist usage =
cannam@127 249 Arg.parse
cannam@127 250 (user_speclist @ speclist @ Magic.speclist @ Simdmagic.speclist)
cannam@127 251 standard_arg_parse_fail
cannam@127 252 usage
cannam@127 253
cannam@127 254 let rec list_to_c = function
cannam@127 255 [] -> ""
cannam@127 256 | [a] -> (string_of_int a)
cannam@127 257 | a :: b -> (string_of_int a) ^ ", " ^ (list_to_c b)
cannam@127 258
cannam@127 259 let rec list_to_comma = function
cannam@127 260 | [a; b] -> C.Comma (a, b)
cannam@127 261 | a :: b -> C.Comma (a, list_to_comma b)
cannam@127 262 | _ -> failwith "list_to_comma"
cannam@127 263
cannam@127 264
cannam@127 265 type stride = Stride_variable | Fixed_int of int | Fixed_string of string
cannam@127 266
cannam@127 267 let either_stride a b =
cannam@127 268 match a with
cannam@127 269 Fixed_int x -> C.SInteger x
cannam@127 270 | Fixed_string x -> C.SConst x
cannam@127 271 | _ -> b
cannam@127 272
cannam@127 273 let stride_fixed = function
cannam@127 274 Stride_variable -> false
cannam@127 275 | _ -> true
cannam@127 276
cannam@127 277 let arg_to_stride s =
cannam@127 278 try
cannam@127 279 Fixed_int (int_of_string s)
cannam@127 280 with Failure "int_of_string" ->
cannam@127 281 Fixed_string s
cannam@127 282
cannam@127 283 let stride_to_solverparm = function
cannam@127 284 Stride_variable -> "0"
cannam@127 285 | Fixed_int x -> string_of_int x
cannam@127 286 | Fixed_string x -> x
cannam@127 287
cannam@127 288 let stride_to_string s = function
cannam@127 289 Stride_variable -> s
cannam@127 290 | Fixed_int x -> string_of_int x
cannam@127 291 | Fixed_string x -> x
cannam@127 292
cannam@127 293 (* output the command line *)
cannam@127 294 let cmdline () =
cannam@127 295 List.fold_right (fun a b -> a ^ " " ^ b) (Array.to_list Sys.argv) ""
cannam@127 296
cannam@127 297 let unparse tree =
cannam@127 298 "/* Generated by: " ^ (cmdline ()) ^ "*/\n\n" ^
cannam@127 299 (C.print_cost tree) ^
cannam@127 300 (if String.length !Magic.inklude > 0
cannam@127 301 then
cannam@127 302 (Printf.sprintf "#include \"%s\"\n\n" !Magic.inklude)
cannam@127 303 else "") ^
cannam@127 304 (if !Simdmagic.simd_mode then
cannam@127 305 Simd.unparse_function tree
cannam@127 306 else
cannam@127 307 C.unparse_function tree)
cannam@127 308
cannam@127 309 let finalize_fcn ast =
cannam@127 310 let mergedecls = function
cannam@127 311 C.Block (d1, [C.Block (d2, s)]) -> C.Block (d1 @ d2, s)
cannam@127 312 | x -> x
cannam@127 313 and extract_constants =
cannam@127 314 if !Simdmagic.simd_mode then
cannam@127 315 Simd.extract_constants
cannam@127 316 else
cannam@127 317 C.extract_constants
cannam@127 318
cannam@127 319 in mergedecls (C.Block (extract_constants ast, [ast; C.Simd_leavefun]))
cannam@127 320
cannam@127 321 let twinstr_to_string vl x =
cannam@127 322 if !Simdmagic.simd_mode then
cannam@127 323 Twiddle.twinstr_to_simd_string vl x
cannam@127 324 else
cannam@127 325 Twiddle.twinstr_to_c_string x
cannam@127 326
cannam@127 327 let make_volatile_stride n x =
cannam@127 328 C.CCall ("MAKE_VOLATILE_STRIDE", C.Comma((C.Integer n), x))