cannam@127
|
1 (*
|
cannam@127
|
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
5 *
|
cannam@127
|
6 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
7 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
8 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
9 * (at your option) any later version.
|
cannam@127
|
10 *
|
cannam@127
|
11 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
14 * GNU General Public License for more details.
|
cannam@127
|
15 *
|
cannam@127
|
16 * You should have received a copy of the GNU General Public License
|
cannam@127
|
17 * along with this program; if not, write to the Free Software
|
cannam@127
|
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
19 *
|
cannam@127
|
20 *)
|
cannam@127
|
21
|
cannam@127
|
22
|
cannam@127
|
23 (* This is the part of the generator that actually computes the FFT
|
cannam@127
|
24 in symbolic form *)
|
cannam@127
|
25
|
cannam@127
|
26 open Complex
|
cannam@127
|
27 open Util
|
cannam@127
|
28
|
cannam@127
|
29 (* choose a suitable factor of n *)
|
cannam@127
|
30 let choose_factor n =
|
cannam@127
|
31 (* first choice: i such that gcd(i, n / i) = 1, i as big as possible *)
|
cannam@127
|
32 let choose1 n =
|
cannam@127
|
33 let rec loop i f =
|
cannam@127
|
34 if (i * i > n) then f
|
cannam@127
|
35 else if ((n mod i) == 0 && gcd i (n / i) == 1) then loop (i + 1) i
|
cannam@127
|
36 else loop (i + 1) f
|
cannam@127
|
37 in loop 1 1
|
cannam@127
|
38
|
cannam@127
|
39 (* second choice: the biggest factor i of n, where i < sqrt(n), if any *)
|
cannam@127
|
40 and choose2 n =
|
cannam@127
|
41 let rec loop i f =
|
cannam@127
|
42 if (i * i > n) then f
|
cannam@127
|
43 else if ((n mod i) == 0) then loop (i + 1) i
|
cannam@127
|
44 else loop (i + 1) f
|
cannam@127
|
45 in loop 1 1
|
cannam@127
|
46
|
cannam@127
|
47 in let i = choose1 n in
|
cannam@127
|
48 if (i > 1) then i
|
cannam@127
|
49 else choose2 n
|
cannam@127
|
50
|
cannam@127
|
51 let is_power_of_two n = (n > 0) && ((n - 1) land n == 0)
|
cannam@127
|
52
|
cannam@127
|
53 let rec dft_prime sign n input =
|
cannam@127
|
54 let sum filter i =
|
cannam@127
|
55 sigma 0 n (fun j ->
|
cannam@127
|
56 let coeff = filter (exp n (sign * i * j))
|
cannam@127
|
57 in coeff @* (input j)) in
|
cannam@127
|
58 let computation_even = array n (sum identity)
|
cannam@127
|
59 and computation_odd =
|
cannam@127
|
60 let sumr = array n (sum real)
|
cannam@127
|
61 and sumi = array n (sum ((times Complex.i) @@ imag)) in
|
cannam@127
|
62 array n (fun i ->
|
cannam@127
|
63 if (i = 0) then
|
cannam@127
|
64 (* expose some common subexpressions *)
|
cannam@127
|
65 input 0 @+
|
cannam@127
|
66 sigma 1 ((n + 1) / 2) (fun j -> input j @+ input (n - j))
|
cannam@127
|
67 else
|
cannam@127
|
68 let i' = min i (n - i) in
|
cannam@127
|
69 if (i < n - i) then
|
cannam@127
|
70 sumr i' @+ sumi i'
|
cannam@127
|
71 else
|
cannam@127
|
72 sumr i' @- sumi i') in
|
cannam@127
|
73 if (n >= !Magic.rader_min) then
|
cannam@127
|
74 dft_rader sign n input
|
cannam@127
|
75 else if (n == 2) then
|
cannam@127
|
76 computation_even
|
cannam@127
|
77 else
|
cannam@127
|
78 computation_odd
|
cannam@127
|
79
|
cannam@127
|
80
|
cannam@127
|
81 and dft_rader sign p input =
|
cannam@127
|
82 let half =
|
cannam@127
|
83 let one_half = inverse_int 2 in
|
cannam@127
|
84 times one_half
|
cannam@127
|
85
|
cannam@127
|
86 and make_product n a b =
|
cannam@127
|
87 let scale_factor = inverse_int n in
|
cannam@127
|
88 array n (fun i -> a i @* (scale_factor @* b i)) in
|
cannam@127
|
89
|
cannam@127
|
90 (* generates a convolution using ffts. (all arguments are the
|
cannam@127
|
91 same as to gen_convolution, below) *)
|
cannam@127
|
92 let gen_convolution_by_fft n a b addtoall =
|
cannam@127
|
93 let fft_a = dft 1 n a
|
cannam@127
|
94 and fft_b = dft 1 n b in
|
cannam@127
|
95
|
cannam@127
|
96 let fft_ab = make_product n fft_a fft_b
|
cannam@127
|
97 and dc_term i = if (i == 0) then addtoall else zero in
|
cannam@127
|
98
|
cannam@127
|
99 let fft_ab1 = array n (fun i -> fft_ab i @+ dc_term i)
|
cannam@127
|
100 and sum = fft_a 0 in
|
cannam@127
|
101 let conv = dft (-1) n fft_ab1 in
|
cannam@127
|
102 (sum, conv)
|
cannam@127
|
103
|
cannam@127
|
104 (* alternate routine for convolution. Seems to work better for
|
cannam@127
|
105 small sizes. I have no idea why. *)
|
cannam@127
|
106 and gen_convolution_by_fft_alt n a b addtoall =
|
cannam@127
|
107 let ap = array n (fun i -> half (a i @+ a ((n - i) mod n)))
|
cannam@127
|
108 and am = array n (fun i -> half (a i @- a ((n - i) mod n)))
|
cannam@127
|
109 and bp = array n (fun i -> half (b i @+ b ((n - i) mod n)))
|
cannam@127
|
110 and bm = array n (fun i -> half (b i @- b ((n - i) mod n)))
|
cannam@127
|
111 in
|
cannam@127
|
112
|
cannam@127
|
113 let fft_ap = dft 1 n ap
|
cannam@127
|
114 and fft_am = dft 1 n am
|
cannam@127
|
115 and fft_bp = dft 1 n bp
|
cannam@127
|
116 and fft_bm = dft 1 n bm in
|
cannam@127
|
117
|
cannam@127
|
118 let fft_abpp = make_product n fft_ap fft_bp
|
cannam@127
|
119 and fft_abpm = make_product n fft_ap fft_bm
|
cannam@127
|
120 and fft_abmp = make_product n fft_am fft_bp
|
cannam@127
|
121 and fft_abmm = make_product n fft_am fft_bm
|
cannam@127
|
122 and sum = fft_ap 0 @+ fft_am 0
|
cannam@127
|
123 and dc_term i = if (i == 0) then addtoall else zero in
|
cannam@127
|
124
|
cannam@127
|
125 let fft_ab1 = array n (fun i -> (fft_abpp i @+ fft_abmm i) @+ dc_term i)
|
cannam@127
|
126 and fft_ab2 = array n (fun i -> fft_abpm i @+ fft_abmp i) in
|
cannam@127
|
127 let conv1 = dft (-1) n fft_ab1
|
cannam@127
|
128 and conv2 = dft (-1) n fft_ab2 in
|
cannam@127
|
129 let conv = array n (fun i ->
|
cannam@127
|
130 conv1 i @+ conv2 i) in
|
cannam@127
|
131 (sum, conv)
|
cannam@127
|
132
|
cannam@127
|
133 (* generator of assignment list assigning conv to the convolution of
|
cannam@127
|
134 a and b, all of which are of length n. addtoall is added to
|
cannam@127
|
135 all of the elements of the result. Returns (sum, convolution) pair
|
cannam@127
|
136 where sum is the sum of the elements of a. *)
|
cannam@127
|
137
|
cannam@127
|
138 in let gen_convolution =
|
cannam@127
|
139 if (p <= !Magic.alternate_convolution) then
|
cannam@127
|
140 gen_convolution_by_fft_alt
|
cannam@127
|
141 else
|
cannam@127
|
142 gen_convolution_by_fft
|
cannam@127
|
143
|
cannam@127
|
144 (* fft generator for prime n = p using Rader's algorithm for
|
cannam@127
|
145 turning the fft into a convolution, which then can be
|
cannam@127
|
146 performed in a variety of ways *)
|
cannam@127
|
147 in
|
cannam@127
|
148 let g = find_generator p in
|
cannam@127
|
149 let ginv = pow_mod g (p - 2) p in
|
cannam@127
|
150 let input_perm = array p (fun i -> input (pow_mod g i p))
|
cannam@127
|
151 and omega_perm = array p (fun i -> exp p (sign * (pow_mod ginv i p)))
|
cannam@127
|
152 and output_perm = array p (fun i -> pow_mod ginv i p)
|
cannam@127
|
153 in let (sum, conv) =
|
cannam@127
|
154 (gen_convolution (p - 1) input_perm omega_perm (input 0))
|
cannam@127
|
155 in array p (fun i ->
|
cannam@127
|
156 if (i = 0) then
|
cannam@127
|
157 input 0 @+ sum
|
cannam@127
|
158 else
|
cannam@127
|
159 let i' = suchthat 0 (fun i' -> i = output_perm i')
|
cannam@127
|
160 in conv i')
|
cannam@127
|
161
|
cannam@127
|
162 (* our modified version of the conjugate-pair split-radix algorithm,
|
cannam@127
|
163 which reduces the number of multiplications by rescaling the
|
cannam@127
|
164 sub-transforms (power-of-two n's only) *)
|
cannam@127
|
165 and newsplit sign n input =
|
cannam@127
|
166 let rec s n k = (* recursive scale factor *)
|
cannam@127
|
167 if n <= 4 then
|
cannam@127
|
168 one
|
cannam@127
|
169 else
|
cannam@127
|
170 let k4 = (abs k) mod (n / 4) in
|
cannam@127
|
171 let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in
|
cannam@127
|
172 (s (n / 4) k4') @* (real (exp n k4'))
|
cannam@127
|
173
|
cannam@127
|
174 and sinv n k = (* 1 / s(n,k) *)
|
cannam@127
|
175 if n <= 4 then
|
cannam@127
|
176 one
|
cannam@127
|
177 else
|
cannam@127
|
178 let k4 = (abs k) mod (n / 4) in
|
cannam@127
|
179 let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in
|
cannam@127
|
180 (sinv (n / 4) k4') @* (sec n k4')
|
cannam@127
|
181
|
cannam@127
|
182 in let sdiv2 n k = (s n k) @* (sinv (2*n) k) (* s(n,k) / s(2*n,k) *)
|
cannam@127
|
183 and sdiv4 n k = (* s(n,k) / s(4*n,k) *)
|
cannam@127
|
184 let k4 = (abs k) mod n in
|
cannam@127
|
185 sec (4*n) (if k4 <= (n / 2) then k4 else (n - k4))
|
cannam@127
|
186
|
cannam@127
|
187 in let t n k = (exp n k) @* (sdiv4 (n/4) k)
|
cannam@127
|
188
|
cannam@127
|
189 and dft1 input = input
|
cannam@127
|
190 and dft2 input = array 2 (fun k -> (input 0) @+ ((input 1) @* exp 2 k))
|
cannam@127
|
191
|
cannam@127
|
192 in let rec newsplit0 sign n input =
|
cannam@127
|
193 if (n == 1) then dft1 input
|
cannam@127
|
194 else if (n == 2) then dft2 input
|
cannam@127
|
195 else let u = newsplit0 sign (n / 2) (fun i -> input (i*2))
|
cannam@127
|
196 and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
|
cannam@127
|
197 and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n))
|
cannam@127
|
198 and twid = array n (fun k -> s (n/4) k @* exp n (sign * k)) in
|
cannam@127
|
199 let w = array n (fun k -> twid k @* z (k mod (n / 4)))
|
cannam@127
|
200 and w' = array n (fun k -> conj (twid k) @* z' (k mod (n / 4))) in
|
cannam@127
|
201 let ww = array n (fun k -> w k @+ w' k) in
|
cannam@127
|
202 array n (fun k -> u (k mod (n / 2)) @+ ww k)
|
cannam@127
|
203
|
cannam@127
|
204 and newsplitS sign n input =
|
cannam@127
|
205 if (n == 1) then dft1 input
|
cannam@127
|
206 else if (n == 2) then dft2 input
|
cannam@127
|
207 else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2))
|
cannam@127
|
208 and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
|
cannam@127
|
209 and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
|
cannam@127
|
210 let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
|
cannam@127
|
211 and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
|
cannam@127
|
212 let ww = array n (fun k -> w k @+ w' k) in
|
cannam@127
|
213 array n (fun k -> u (k mod (n / 2)) @+ ww k)
|
cannam@127
|
214
|
cannam@127
|
215 and newsplitS2 sign n input =
|
cannam@127
|
216 if (n == 1) then dft1 input
|
cannam@127
|
217 else if (n == 2) then dft2 input
|
cannam@127
|
218 else let u = newsplitS4 sign (n / 2) (fun i -> input (i*2))
|
cannam@127
|
219 and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
|
cannam@127
|
220 and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
|
cannam@127
|
221 let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
|
cannam@127
|
222 and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
|
cannam@127
|
223 let ww = array n (fun k -> (w k @+ w' k) @* (sdiv2 n k)) in
|
cannam@127
|
224 array n (fun k -> u (k mod (n / 2)) @+ ww k)
|
cannam@127
|
225
|
cannam@127
|
226 and newsplitS4 sign n input =
|
cannam@127
|
227 if (n == 1) then dft1 input
|
cannam@127
|
228 else if (n == 2) then
|
cannam@127
|
229 let f = dft2 input
|
cannam@127
|
230 in array 2 (fun k -> (f k) @* (sinv 8 k))
|
cannam@127
|
231 else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2))
|
cannam@127
|
232 and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
|
cannam@127
|
233 and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
|
cannam@127
|
234 let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
|
cannam@127
|
235 and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
|
cannam@127
|
236 let ww = array n (fun k -> w k @+ w' k) in
|
cannam@127
|
237 array n (fun k -> (u (k mod (n / 2)) @+ ww k) @* (sdiv4 n k))
|
cannam@127
|
238
|
cannam@127
|
239 in newsplit0 sign n input
|
cannam@127
|
240
|
cannam@127
|
241 and dft sign n input =
|
cannam@127
|
242 let rec cooley_tukey sign n1 n2 input =
|
cannam@127
|
243 let tmp1 =
|
cannam@127
|
244 array n2 (fun i2 ->
|
cannam@127
|
245 dft sign n1 (fun i1 -> input (i1 * n2 + i2))) in
|
cannam@127
|
246 let tmp2 =
|
cannam@127
|
247 array n1 (fun i1 ->
|
cannam@127
|
248 array n2 (fun i2 ->
|
cannam@127
|
249 exp n (sign * i1 * i2) @* tmp1 i2 i1)) in
|
cannam@127
|
250 let tmp3 = array n1 (fun i1 -> dft sign n2 (tmp2 i1)) in
|
cannam@127
|
251 (fun i -> tmp3 (i mod n1) (i / n1))
|
cannam@127
|
252
|
cannam@127
|
253 (*
|
cannam@127
|
254 * This is "exponent -1" split-radix by Dan Bernstein.
|
cannam@127
|
255 *)
|
cannam@127
|
256 and split_radix_dit sign n input =
|
cannam@127
|
257 let f0 = dft sign (n / 2) (fun i -> input (i * 2))
|
cannam@127
|
258 and f10 = dft sign (n / 4) (fun i -> input (i * 4 + 1))
|
cannam@127
|
259 and f11 = dft sign (n / 4) (fun i -> input ((n + i * 4 - 1) mod n)) in
|
cannam@127
|
260 let g10 = array n (fun k ->
|
cannam@127
|
261 exp n (sign * k) @* f10 (k mod (n / 4)))
|
cannam@127
|
262 and g11 = array n (fun k ->
|
cannam@127
|
263 exp n (- sign * k) @* f11 (k mod (n / 4))) in
|
cannam@127
|
264 let g1 = array n (fun k -> g10 k @+ g11 k) in
|
cannam@127
|
265 array n (fun k -> f0 (k mod (n / 2)) @+ g1 k)
|
cannam@127
|
266
|
cannam@127
|
267 and split_radix_dif sign n input =
|
cannam@127
|
268 let n2 = n / 2 and n4 = n / 4 in
|
cannam@127
|
269 let x0 = array n2 (fun i -> input i @+ input (i + n2))
|
cannam@127
|
270 and x10 = array n4 (fun i -> input i @- input (i + n2))
|
cannam@127
|
271 and x11 = array n4 (fun i ->
|
cannam@127
|
272 input (i + n4) @- input (i + n2 + n4)) in
|
cannam@127
|
273 let x1 k i =
|
cannam@127
|
274 exp n (k * i * sign) @* (x10 i @+ exp 4 (k * sign) @* x11 i) in
|
cannam@127
|
275 let f0 = dft sign n2 x0
|
cannam@127
|
276 and f1 = array 4 (fun k -> dft sign n4 (x1 k)) in
|
cannam@127
|
277 array n (fun k ->
|
cannam@127
|
278 if k mod 2 = 0 then f0 (k / 2)
|
cannam@127
|
279 else let k' = k mod 4 in f1 k' ((k - k') / 4))
|
cannam@127
|
280
|
cannam@127
|
281 and prime_factor sign n1 n2 input =
|
cannam@127
|
282 let tmp1 = array n2 (fun i2 ->
|
cannam@127
|
283 dft sign n1 (fun i1 -> input ((i1 * n2 + i2 * n1) mod n)))
|
cannam@127
|
284 in let tmp2 = array n1 (fun i1 ->
|
cannam@127
|
285 dft sign n2 (fun k2 -> tmp1 k2 i1))
|
cannam@127
|
286 in fun i -> tmp2 (i mod n1) (i mod n2)
|
cannam@127
|
287
|
cannam@127
|
288 in let algorithm sign n =
|
cannam@127
|
289 let r = choose_factor n in
|
cannam@127
|
290 if List.mem n !Magic.rader_list then
|
cannam@127
|
291 (* special cases *)
|
cannam@127
|
292 dft_rader sign n
|
cannam@127
|
293 else if (r == 1) then (* n is prime *)
|
cannam@127
|
294 dft_prime sign n
|
cannam@127
|
295 else if (gcd r (n / r)) == 1 then
|
cannam@127
|
296 prime_factor sign r (n / r)
|
cannam@127
|
297 else if (n mod 4 = 0 && n > 4) then
|
cannam@127
|
298 if !Magic.newsplit && is_power_of_two n then
|
cannam@127
|
299 newsplit sign n
|
cannam@127
|
300 else if !Magic.dif_split_radix then
|
cannam@127
|
301 split_radix_dif sign n
|
cannam@127
|
302 else
|
cannam@127
|
303 split_radix_dit sign n
|
cannam@127
|
304 else
|
cannam@127
|
305 cooley_tukey sign r (n / r)
|
cannam@127
|
306 in
|
cannam@127
|
307 array n (algorithm sign n input)
|