| cannam@127 | 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> | 
| cannam@127 | 2 <html> | 
| cannam@127 | 3 <!-- This manual is for FFTW | 
| cannam@127 | 4 (version 3.3.5, 30 July 2016). | 
| cannam@127 | 5 | 
| cannam@127 | 6 Copyright (C) 2003 Matteo Frigo. | 
| cannam@127 | 7 | 
| cannam@127 | 8 Copyright (C) 2003 Massachusetts Institute of Technology. | 
| cannam@127 | 9 | 
| cannam@127 | 10 Permission is granted to make and distribute verbatim copies of this | 
| cannam@127 | 11 manual provided the copyright notice and this permission notice are | 
| cannam@127 | 12 preserved on all copies. | 
| cannam@127 | 13 | 
| cannam@127 | 14 Permission is granted to copy and distribute modified versions of this | 
| cannam@127 | 15 manual under the conditions for verbatim copying, provided that the | 
| cannam@127 | 16 entire resulting derived work is distributed under the terms of a | 
| cannam@127 | 17 permission notice identical to this one. | 
| cannam@127 | 18 | 
| cannam@127 | 19 Permission is granted to copy and distribute translations of this manual | 
| cannam@127 | 20 into another language, under the above conditions for modified versions, | 
| cannam@127 | 21 except that this permission notice may be stated in a translation | 
| cannam@127 | 22 approved by the Free Software Foundation. --> | 
| cannam@127 | 23 <!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ --> | 
| cannam@127 | 24 <head> | 
| cannam@127 | 25 <title>FFTW 3.3.5: 1d Real-even DFTs (DCTs)</title> | 
| cannam@127 | 26 | 
| cannam@127 | 27 <meta name="description" content="FFTW 3.3.5: 1d Real-even DFTs (DCTs)"> | 
| cannam@127 | 28 <meta name="keywords" content="FFTW 3.3.5: 1d Real-even DFTs (DCTs)"> | 
| cannam@127 | 29 <meta name="resource-type" content="document"> | 
| cannam@127 | 30 <meta name="distribution" content="global"> | 
| cannam@127 | 31 <meta name="Generator" content="makeinfo"> | 
| cannam@127 | 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
| cannam@127 | 33 <link href="index.html#Top" rel="start" title="Top"> | 
| cannam@127 | 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> | 
| cannam@127 | 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> | 
| cannam@127 | 36 <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes"> | 
| cannam@127 | 37 <link href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" rel="next" title="1d Real-odd DFTs (DSTs)"> | 
| cannam@127 | 38 <link href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" rel="prev" title="The 1d Real-data DFT"> | 
| cannam@127 | 39 <style type="text/css"> | 
| cannam@127 | 40 <!-- | 
| cannam@127 | 41 a.summary-letter {text-decoration: none} | 
| cannam@127 | 42 blockquote.smallquotation {font-size: smaller} | 
| cannam@127 | 43 div.display {margin-left: 3.2em} | 
| cannam@127 | 44 div.example {margin-left: 3.2em} | 
| cannam@127 | 45 div.indentedblock {margin-left: 3.2em} | 
| cannam@127 | 46 div.lisp {margin-left: 3.2em} | 
| cannam@127 | 47 div.smalldisplay {margin-left: 3.2em} | 
| cannam@127 | 48 div.smallexample {margin-left: 3.2em} | 
| cannam@127 | 49 div.smallindentedblock {margin-left: 3.2em; font-size: smaller} | 
| cannam@127 | 50 div.smalllisp {margin-left: 3.2em} | 
| cannam@127 | 51 kbd {font-style:oblique} | 
| cannam@127 | 52 pre.display {font-family: inherit} | 
| cannam@127 | 53 pre.format {font-family: inherit} | 
| cannam@127 | 54 pre.menu-comment {font-family: serif} | 
| cannam@127 | 55 pre.menu-preformatted {font-family: serif} | 
| cannam@127 | 56 pre.smalldisplay {font-family: inherit; font-size: smaller} | 
| cannam@127 | 57 pre.smallexample {font-size: smaller} | 
| cannam@127 | 58 pre.smallformat {font-family: inherit; font-size: smaller} | 
| cannam@127 | 59 pre.smalllisp {font-size: smaller} | 
| cannam@127 | 60 span.nocodebreak {white-space:nowrap} | 
| cannam@127 | 61 span.nolinebreak {white-space:nowrap} | 
| cannam@127 | 62 span.roman {font-family:serif; font-weight:normal} | 
| cannam@127 | 63 span.sansserif {font-family:sans-serif; font-weight:normal} | 
| cannam@127 | 64 ul.no-bullet {list-style: none} | 
| cannam@127 | 65 --> | 
| cannam@127 | 66 </style> | 
| cannam@127 | 67 | 
| cannam@127 | 68 | 
| cannam@127 | 69 </head> | 
| cannam@127 | 70 | 
| cannam@127 | 71 <body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000"> | 
| cannam@127 | 72 <a name="g_t1d-Real_002deven-DFTs-_0028DCTs_0029"></a> | 
| cannam@127 | 73 <div class="header"> | 
| cannam@127 | 74 <p> | 
| cannam@127 | 75 Next: <a href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" accesskey="n" rel="next">1d Real-odd DFTs (DSTs)</a>, Previous: <a href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" accesskey="p" rel="prev">The 1d Real-data DFT</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a>   [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> | 
| cannam@127 | 76 </div> | 
| cannam@127 | 77 <hr> | 
| cannam@127 | 78 <a name="g_t1d-Real_002deven-DFTs-_0028DCTs_0029-1"></a> | 
| cannam@127 | 79 <h4 class="subsection">4.8.3 1d Real-even DFTs (DCTs)</h4> | 
| cannam@127 | 80 | 
| cannam@127 | 81 <p>The Real-even symmetry DFTs in FFTW are exactly equivalent to the unnormalized | 
| cannam@127 | 82 forward (and backward) DFTs as defined above, where the input array | 
| cannam@127 | 83 <em>X</em> of length <em>N</em> is purely real and is also <em>even</em> symmetry.  In | 
| cannam@127 | 84 this case, the output array is likewise real and even symmetry. | 
| cannam@127 | 85 <a name="index-real_002deven-DFT-1"></a> | 
| cannam@127 | 86 <a name="index-REDFT-1"></a> | 
| cannam@127 | 87 </p> | 
| cannam@127 | 88 | 
| cannam@127 | 89 <a name="index-REDFT00"></a> | 
| cannam@127 | 90 <p>For the case of <code>REDFT00</code>, this even symmetry means that | 
| cannam@127 | 91 <i>X<sub>j</sub> = X<sub>N-j</sub></i>,where we take <em>X</em> to be periodic so that | 
| cannam@127 | 92 <i>X<sub>N</sub> = X</i><sub>0</sub>.Because of this redundancy, only the first <em>n</em> real numbers are | 
| cannam@127 | 93 actually stored, where <em>N = 2(n-1)</em>. | 
| cannam@127 | 94 </p> | 
| cannam@127 | 95 <p>The proper definition of even symmetry for <code>REDFT10</code>, | 
| cannam@127 | 96 <code>REDFT01</code>, and <code>REDFT11</code> transforms is somewhat more intricate | 
| cannam@127 | 97 because of the shifts by <em>1/2</em> of the input and/or output, although | 
| cannam@127 | 98 the corresponding boundary conditions are given in <a href="Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029.html#Real-even_002fodd-DFTs-_0028cosine_002fsine-transforms_0029">Real even/odd DFTs (cosine/sine transforms)</a>.  Because of the even symmetry, however, | 
| cannam@127 | 99 the sine terms in the DFT all cancel and the remaining cosine terms are | 
| cannam@127 | 100 written explicitly below.  This formulation often leads people to call | 
| cannam@127 | 101 such a transform a <em>discrete cosine transform</em> (DCT), although it is | 
| cannam@127 | 102 really just a special case of the DFT. | 
| cannam@127 | 103 <a name="index-discrete-cosine-transform-2"></a> | 
| cannam@127 | 104 <a name="index-DCT-2"></a> | 
| cannam@127 | 105 </p> | 
| cannam@127 | 106 | 
| cannam@127 | 107 <p>In each of the definitions below, we transform a real array <em>X</em> of | 
| cannam@127 | 108 length <em>n</em> to a real array <em>Y</em> of length <em>n</em>: | 
| cannam@127 | 109 </p> | 
| cannam@127 | 110 <a name="REDFT00-_0028DCT_002dI_0029"></a> | 
| cannam@127 | 111 <h4 class="subsubheading">REDFT00 (DCT-I)</h4> | 
| cannam@127 | 112 <a name="index-REDFT00-1"></a> | 
| cannam@127 | 113 <p>An <code>REDFT00</code> transform (type-I DCT) in FFTW is defined by: | 
| cannam@127 | 114 <center><img src="equation-redft00.png" align="top">.</center>Note that this transform is not defined for <em>n=1</em>.  For <em>n=2</em>, | 
| cannam@127 | 115 the summation term above is dropped as you might expect. | 
| cannam@127 | 116 </p> | 
| cannam@127 | 117 <a name="REDFT10-_0028DCT_002dII_0029"></a> | 
| cannam@127 | 118 <h4 class="subsubheading">REDFT10 (DCT-II)</h4> | 
| cannam@127 | 119 <a name="index-REDFT10"></a> | 
| cannam@127 | 120 <p>An <code>REDFT10</code> transform (type-II DCT, sometimes called “the” DCT) in FFTW is defined by: | 
| cannam@127 | 121 <center><img src="equation-redft10.png" align="top">.</center></p> | 
| cannam@127 | 122 <a name="REDFT01-_0028DCT_002dIII_0029"></a> | 
| cannam@127 | 123 <h4 class="subsubheading">REDFT01 (DCT-III)</h4> | 
| cannam@127 | 124 <a name="index-REDFT01"></a> | 
| cannam@127 | 125 <p>An <code>REDFT01</code> transform (type-III DCT) in FFTW is defined by: | 
| cannam@127 | 126 <center><img src="equation-redft01.png" align="top">.</center>In the case of <em>n=1</em>, this reduces to | 
| cannam@127 | 127 <i>Y</i><sub>0</sub> = <i>X</i><sub>0</sub>.Up to a scale factor (see below), this is the inverse of <code>REDFT10</code> (“the” DCT), and so the <code>REDFT01</code> (DCT-III) is sometimes called the “IDCT”. | 
| cannam@127 | 128 <a name="index-IDCT-3"></a> | 
| cannam@127 | 129 </p> | 
| cannam@127 | 130 <a name="REDFT11-_0028DCT_002dIV_0029"></a> | 
| cannam@127 | 131 <h4 class="subsubheading">REDFT11 (DCT-IV)</h4> | 
| cannam@127 | 132 <a name="index-REDFT11"></a> | 
| cannam@127 | 133 <p>An <code>REDFT11</code> transform (type-IV DCT) in FFTW is defined by: | 
| cannam@127 | 134 <center><img src="equation-redft11.png" align="top">.</center></p> | 
| cannam@127 | 135 <a name="Inverses-and-Normalization"></a> | 
| cannam@127 | 136 <h4 class="subsubheading">Inverses and Normalization</h4> | 
| cannam@127 | 137 | 
| cannam@127 | 138 <p>These definitions correspond directly to the unnormalized DFTs used | 
| cannam@127 | 139 elsewhere in FFTW (hence the factors of <em>2</em> in front of the | 
| cannam@127 | 140 summations).  The unnormalized inverse of <code>REDFT00</code> is | 
| cannam@127 | 141 <code>REDFT00</code>, of <code>REDFT10</code> is <code>REDFT01</code> and vice versa, and | 
| cannam@127 | 142 of <code>REDFT11</code> is <code>REDFT11</code>.  Each unnormalized inverse results | 
| cannam@127 | 143 in the original array multiplied by <em>N</em>, where <em>N</em> is the | 
| cannam@127 | 144 <em>logical</em> DFT size.  For <code>REDFT00</code>, <em>N=2(n-1)</em> (note that | 
| cannam@127 | 145 <em>n=1</em> is not defined); otherwise, <em>N=2n</em>. | 
| cannam@127 | 146 <a name="index-normalization-10"></a> | 
| cannam@127 | 147 </p> | 
| cannam@127 | 148 | 
| cannam@127 | 149 <p>In defining the discrete cosine transform, some authors also include | 
| cannam@127 | 150 additional factors of | 
| cannam@127 | 151 √2(or its inverse) multiplying selected inputs and/or outputs.  This is a | 
| cannam@127 | 152 mostly cosmetic change that makes the transform orthogonal, but | 
| cannam@127 | 153 sacrifices the direct equivalence to a symmetric DFT. | 
| cannam@127 | 154 </p> | 
| cannam@127 | 155 <hr> | 
| cannam@127 | 156 <div class="header"> | 
| cannam@127 | 157 <p> | 
| cannam@127 | 158 Next: <a href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" accesskey="n" rel="next">1d Real-odd DFTs (DSTs)</a>, Previous: <a href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" accesskey="p" rel="prev">The 1d Real-data DFT</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a>   [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> | 
| cannam@127 | 159 </div> | 
| cannam@127 | 160 | 
| cannam@127 | 161 | 
| cannam@127 | 162 | 
| cannam@127 | 163 </body> | 
| cannam@127 | 164 </html> |