cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21 #include "dft.h"
|
cannam@127
|
22
|
cannam@127
|
23 /*
|
cannam@127
|
24 * Compute transforms of prime sizes using Rader's trick: turn them
|
cannam@127
|
25 * into convolutions of size n - 1, which you then perform via a pair
|
cannam@127
|
26 * of FFTs.
|
cannam@127
|
27 */
|
cannam@127
|
28
|
cannam@127
|
29 typedef struct {
|
cannam@127
|
30 solver super;
|
cannam@127
|
31 } S;
|
cannam@127
|
32
|
cannam@127
|
33 typedef struct {
|
cannam@127
|
34 plan_dft super;
|
cannam@127
|
35
|
cannam@127
|
36 plan *cld1, *cld2;
|
cannam@127
|
37 R *omega;
|
cannam@127
|
38 INT n, g, ginv;
|
cannam@127
|
39 INT is, os;
|
cannam@127
|
40 plan *cld_omega;
|
cannam@127
|
41 } P;
|
cannam@127
|
42
|
cannam@127
|
43 static rader_tl *omegas = 0;
|
cannam@127
|
44
|
cannam@127
|
45 static R *mkomega(enum wakefulness wakefulness, plan *p_, INT n, INT ginv)
|
cannam@127
|
46 {
|
cannam@127
|
47 plan_dft *p = (plan_dft *) p_;
|
cannam@127
|
48 R *omega;
|
cannam@127
|
49 INT i, gpower;
|
cannam@127
|
50 trigreal scale;
|
cannam@127
|
51 triggen *t;
|
cannam@127
|
52
|
cannam@127
|
53 if ((omega = X(rader_tl_find)(n, n, ginv, omegas)))
|
cannam@127
|
54 return omega;
|
cannam@127
|
55
|
cannam@127
|
56 omega = (R *)MALLOC(sizeof(R) * (n - 1) * 2, TWIDDLES);
|
cannam@127
|
57
|
cannam@127
|
58 scale = n - 1.0; /* normalization for convolution */
|
cannam@127
|
59
|
cannam@127
|
60 t = X(mktriggen)(wakefulness, n);
|
cannam@127
|
61 for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
|
cannam@127
|
62 trigreal w[2];
|
cannam@127
|
63 t->cexpl(t, gpower, w);
|
cannam@127
|
64 omega[2*i] = w[0] / scale;
|
cannam@127
|
65 omega[2*i+1] = FFT_SIGN * w[1] / scale;
|
cannam@127
|
66 }
|
cannam@127
|
67 X(triggen_destroy)(t);
|
cannam@127
|
68 A(gpower == 1);
|
cannam@127
|
69
|
cannam@127
|
70 p->apply(p_, omega, omega + 1, omega, omega + 1);
|
cannam@127
|
71
|
cannam@127
|
72 X(rader_tl_insert)(n, n, ginv, omega, &omegas);
|
cannam@127
|
73 return omega;
|
cannam@127
|
74 }
|
cannam@127
|
75
|
cannam@127
|
76 static void free_omega(R *omega)
|
cannam@127
|
77 {
|
cannam@127
|
78 X(rader_tl_delete)(omega, &omegas);
|
cannam@127
|
79 }
|
cannam@127
|
80
|
cannam@127
|
81
|
cannam@127
|
82 /***************************************************************************/
|
cannam@127
|
83
|
cannam@127
|
84 /* Below, we extensively use the identity that fft(x*)* = ifft(x) in
|
cannam@127
|
85 order to share data between forward and backward transforms and to
|
cannam@127
|
86 obviate the necessity of having separate forward and backward
|
cannam@127
|
87 plans. (Although we often compute separate plans these days anyway
|
cannam@127
|
88 due to the differing strides, etcetera.)
|
cannam@127
|
89
|
cannam@127
|
90 Of course, since the new FFTW gives us separate pointers to
|
cannam@127
|
91 the real and imaginary parts, we could have instead used the
|
cannam@127
|
92 fft(r,i) = ifft(i,r) form of this identity, but it was easier to
|
cannam@127
|
93 reuse the code from our old version. */
|
cannam@127
|
94
|
cannam@127
|
95 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
cannam@127
|
96 {
|
cannam@127
|
97 const P *ego = (const P *) ego_;
|
cannam@127
|
98 INT is, os;
|
cannam@127
|
99 INT k, gpower, g, r;
|
cannam@127
|
100 R *buf;
|
cannam@127
|
101 R r0 = ri[0], i0 = ii[0];
|
cannam@127
|
102
|
cannam@127
|
103 r = ego->n; is = ego->is; os = ego->os; g = ego->g;
|
cannam@127
|
104 buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS);
|
cannam@127
|
105
|
cannam@127
|
106 /* First, permute the input, storing in buf: */
|
cannam@127
|
107 for (gpower = 1, k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) {
|
cannam@127
|
108 R rA, iA;
|
cannam@127
|
109 rA = ri[gpower * is];
|
cannam@127
|
110 iA = ii[gpower * is];
|
cannam@127
|
111 buf[2*k] = rA; buf[2*k + 1] = iA;
|
cannam@127
|
112 }
|
cannam@127
|
113 /* gpower == g^(r-1) mod r == 1 */;
|
cannam@127
|
114
|
cannam@127
|
115
|
cannam@127
|
116 /* compute DFT of buf, storing in output (except DC): */
|
cannam@127
|
117 {
|
cannam@127
|
118 plan_dft *cld = (plan_dft *) ego->cld1;
|
cannam@127
|
119 cld->apply(ego->cld1, buf, buf+1, ro+os, io+os);
|
cannam@127
|
120 }
|
cannam@127
|
121
|
cannam@127
|
122 /* set output DC component: */
|
cannam@127
|
123 {
|
cannam@127
|
124 ro[0] = r0 + ro[os];
|
cannam@127
|
125 io[0] = i0 + io[os];
|
cannam@127
|
126 }
|
cannam@127
|
127
|
cannam@127
|
128 /* now, multiply by omega: */
|
cannam@127
|
129 {
|
cannam@127
|
130 const R *omega = ego->omega;
|
cannam@127
|
131 for (k = 0; k < r - 1; ++k) {
|
cannam@127
|
132 E rB, iB, rW, iW;
|
cannam@127
|
133 rW = omega[2*k];
|
cannam@127
|
134 iW = omega[2*k+1];
|
cannam@127
|
135 rB = ro[(k+1)*os];
|
cannam@127
|
136 iB = io[(k+1)*os];
|
cannam@127
|
137 ro[(k+1)*os] = rW * rB - iW * iB;
|
cannam@127
|
138 io[(k+1)*os] = -(rW * iB + iW * rB);
|
cannam@127
|
139 }
|
cannam@127
|
140 }
|
cannam@127
|
141
|
cannam@127
|
142 /* this will add input[0] to all of the outputs after the ifft */
|
cannam@127
|
143 ro[os] += r0;
|
cannam@127
|
144 io[os] -= i0;
|
cannam@127
|
145
|
cannam@127
|
146 /* inverse FFT: */
|
cannam@127
|
147 {
|
cannam@127
|
148 plan_dft *cld = (plan_dft *) ego->cld2;
|
cannam@127
|
149 cld->apply(ego->cld2, ro+os, io+os, buf, buf+1);
|
cannam@127
|
150 }
|
cannam@127
|
151
|
cannam@127
|
152 /* finally, do inverse permutation to unshuffle the output: */
|
cannam@127
|
153 {
|
cannam@127
|
154 INT ginv = ego->ginv;
|
cannam@127
|
155 gpower = 1;
|
cannam@127
|
156 for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) {
|
cannam@127
|
157 ro[gpower * os] = buf[2*k];
|
cannam@127
|
158 io[gpower * os] = -buf[2*k+1];
|
cannam@127
|
159 }
|
cannam@127
|
160 A(gpower == 1);
|
cannam@127
|
161 }
|
cannam@127
|
162
|
cannam@127
|
163
|
cannam@127
|
164 X(ifree)(buf);
|
cannam@127
|
165 }
|
cannam@127
|
166
|
cannam@127
|
167 /***************************************************************************/
|
cannam@127
|
168
|
cannam@127
|
169 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@127
|
170 {
|
cannam@127
|
171 P *ego = (P *) ego_;
|
cannam@127
|
172
|
cannam@127
|
173 X(plan_awake)(ego->cld1, wakefulness);
|
cannam@127
|
174 X(plan_awake)(ego->cld2, wakefulness);
|
cannam@127
|
175 X(plan_awake)(ego->cld_omega, wakefulness);
|
cannam@127
|
176
|
cannam@127
|
177 switch (wakefulness) {
|
cannam@127
|
178 case SLEEPY:
|
cannam@127
|
179 free_omega(ego->omega);
|
cannam@127
|
180 ego->omega = 0;
|
cannam@127
|
181 break;
|
cannam@127
|
182 default:
|
cannam@127
|
183 ego->g = X(find_generator)(ego->n);
|
cannam@127
|
184 ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
|
cannam@127
|
185 A(MULMOD(ego->g, ego->ginv, ego->n) == 1);
|
cannam@127
|
186
|
cannam@127
|
187 ego->omega = mkomega(wakefulness,
|
cannam@127
|
188 ego->cld_omega, ego->n, ego->ginv);
|
cannam@127
|
189 break;
|
cannam@127
|
190 }
|
cannam@127
|
191 }
|
cannam@127
|
192
|
cannam@127
|
193 static void destroy(plan *ego_)
|
cannam@127
|
194 {
|
cannam@127
|
195 P *ego = (P *) ego_;
|
cannam@127
|
196 X(plan_destroy_internal)(ego->cld_omega);
|
cannam@127
|
197 X(plan_destroy_internal)(ego->cld2);
|
cannam@127
|
198 X(plan_destroy_internal)(ego->cld1);
|
cannam@127
|
199 }
|
cannam@127
|
200
|
cannam@127
|
201 static void print(const plan *ego_, printer *p)
|
cannam@127
|
202 {
|
cannam@127
|
203 const P *ego = (const P *)ego_;
|
cannam@127
|
204 p->print(p, "(dft-rader-%D%ois=%oos=%(%p%)",
|
cannam@127
|
205 ego->n, ego->is, ego->os, ego->cld1);
|
cannam@127
|
206 if (ego->cld2 != ego->cld1)
|
cannam@127
|
207 p->print(p, "%(%p%)", ego->cld2);
|
cannam@127
|
208 if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
|
cannam@127
|
209 p->print(p, "%(%p%)", ego->cld_omega);
|
cannam@127
|
210 p->putchr(p, ')');
|
cannam@127
|
211 }
|
cannam@127
|
212
|
cannam@127
|
213 static int applicable(const solver *ego_, const problem *p_,
|
cannam@127
|
214 const planner *plnr)
|
cannam@127
|
215 {
|
cannam@127
|
216 const problem_dft *p = (const problem_dft *) p_;
|
cannam@127
|
217 UNUSED(ego_);
|
cannam@127
|
218 return (1
|
cannam@127
|
219 && p->sz->rnk == 1
|
cannam@127
|
220 && p->vecsz->rnk == 0
|
cannam@127
|
221 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
|
cannam@127
|
222 && X(is_prime)(p->sz->dims[0].n)
|
cannam@127
|
223
|
cannam@127
|
224 /* proclaim the solver SLOW if p-1 is not easily factorizable.
|
cannam@127
|
225 Bluestein should take care of this case. */
|
cannam@127
|
226 && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
|
cannam@127
|
227 );
|
cannam@127
|
228 }
|
cannam@127
|
229
|
cannam@127
|
230 static int mkP(P *pln, INT n, INT is, INT os, R *ro, R *io,
|
cannam@127
|
231 planner *plnr)
|
cannam@127
|
232 {
|
cannam@127
|
233 plan *cld1 = (plan *) 0;
|
cannam@127
|
234 plan *cld2 = (plan *) 0;
|
cannam@127
|
235 plan *cld_omega = (plan *) 0;
|
cannam@127
|
236 R *buf = (R *) 0;
|
cannam@127
|
237
|
cannam@127
|
238 /* initial allocation for the purpose of planning */
|
cannam@127
|
239 buf = (R *) MALLOC(sizeof(R) * (n - 1) * 2, BUFFERS);
|
cannam@127
|
240
|
cannam@127
|
241 cld1 = X(mkplan_f_d)(plnr,
|
cannam@127
|
242 X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, os),
|
cannam@127
|
243 X(mktensor_1d)(1, 0, 0),
|
cannam@127
|
244 buf, buf + 1, ro + os, io + os),
|
cannam@127
|
245 NO_SLOW, 0, 0);
|
cannam@127
|
246 if (!cld1) goto nada;
|
cannam@127
|
247
|
cannam@127
|
248 cld2 = X(mkplan_f_d)(plnr,
|
cannam@127
|
249 X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, os, 2),
|
cannam@127
|
250 X(mktensor_1d)(1, 0, 0),
|
cannam@127
|
251 ro + os, io + os, buf, buf + 1),
|
cannam@127
|
252 NO_SLOW, 0, 0);
|
cannam@127
|
253
|
cannam@127
|
254 if (!cld2) goto nada;
|
cannam@127
|
255
|
cannam@127
|
256 /* plan for omega array */
|
cannam@127
|
257 cld_omega = X(mkplan_f_d)(plnr,
|
cannam@127
|
258 X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, 2),
|
cannam@127
|
259 X(mktensor_1d)(1, 0, 0),
|
cannam@127
|
260 buf, buf + 1, buf, buf + 1),
|
cannam@127
|
261 NO_SLOW, ESTIMATE, 0);
|
cannam@127
|
262 if (!cld_omega) goto nada;
|
cannam@127
|
263
|
cannam@127
|
264 /* deallocate buffers; let awake() or apply() allocate them for real */
|
cannam@127
|
265 X(ifree)(buf);
|
cannam@127
|
266 buf = 0;
|
cannam@127
|
267
|
cannam@127
|
268 pln->cld1 = cld1;
|
cannam@127
|
269 pln->cld2 = cld2;
|
cannam@127
|
270 pln->cld_omega = cld_omega;
|
cannam@127
|
271 pln->omega = 0;
|
cannam@127
|
272 pln->n = n;
|
cannam@127
|
273 pln->is = is;
|
cannam@127
|
274 pln->os = os;
|
cannam@127
|
275
|
cannam@127
|
276 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
|
cannam@127
|
277 pln->super.super.ops.other += (n - 1) * (4 * 2 + 6) + 6;
|
cannam@127
|
278 pln->super.super.ops.add += (n - 1) * 2 + 4;
|
cannam@127
|
279 pln->super.super.ops.mul += (n - 1) * 4;
|
cannam@127
|
280
|
cannam@127
|
281 return 1;
|
cannam@127
|
282
|
cannam@127
|
283 nada:
|
cannam@127
|
284 X(ifree0)(buf);
|
cannam@127
|
285 X(plan_destroy_internal)(cld_omega);
|
cannam@127
|
286 X(plan_destroy_internal)(cld2);
|
cannam@127
|
287 X(plan_destroy_internal)(cld1);
|
cannam@127
|
288 return 0;
|
cannam@127
|
289 }
|
cannam@127
|
290
|
cannam@127
|
291 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
|
cannam@127
|
292 {
|
cannam@127
|
293 const problem_dft *p = (const problem_dft *) p_;
|
cannam@127
|
294 P *pln;
|
cannam@127
|
295 INT n;
|
cannam@127
|
296 INT is, os;
|
cannam@127
|
297
|
cannam@127
|
298 static const plan_adt padt = {
|
cannam@127
|
299 X(dft_solve), awake, print, destroy
|
cannam@127
|
300 };
|
cannam@127
|
301
|
cannam@127
|
302 if (!applicable(ego, p_, plnr))
|
cannam@127
|
303 return (plan *) 0;
|
cannam@127
|
304
|
cannam@127
|
305 n = p->sz->dims[0].n;
|
cannam@127
|
306 is = p->sz->dims[0].is;
|
cannam@127
|
307 os = p->sz->dims[0].os;
|
cannam@127
|
308
|
cannam@127
|
309 pln = MKPLAN_DFT(P, &padt, apply);
|
cannam@127
|
310 if (!mkP(pln, n, is, os, p->ro, p->io, plnr)) {
|
cannam@127
|
311 X(ifree)(pln);
|
cannam@127
|
312 return (plan *) 0;
|
cannam@127
|
313 }
|
cannam@127
|
314 return &(pln->super.super);
|
cannam@127
|
315 }
|
cannam@127
|
316
|
cannam@127
|
317 static solver *mksolver(void)
|
cannam@127
|
318 {
|
cannam@127
|
319 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
|
cannam@127
|
320 S *slv = MKSOLVER(S, &sadt);
|
cannam@127
|
321 return &(slv->super);
|
cannam@127
|
322 }
|
cannam@127
|
323
|
cannam@127
|
324 void X(dft_rader_register)(planner *p)
|
cannam@127
|
325 {
|
cannam@127
|
326 REGISTER_SOLVER(p, mksolver());
|
cannam@127
|
327 }
|