cannam@127
|
1 /*
|
cannam@127
|
2 * Copyright (c) 2003, 2007-14 Matteo Frigo
|
cannam@127
|
3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
cannam@127
|
4 *
|
cannam@127
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@127
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@127
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@127
|
8 * (at your option) any later version.
|
cannam@127
|
9 *
|
cannam@127
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@127
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@127
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@127
|
13 * GNU General Public License for more details.
|
cannam@127
|
14 *
|
cannam@127
|
15 * You should have received a copy of the GNU General Public License
|
cannam@127
|
16 * along with this program; if not, write to the Free Software
|
cannam@127
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@127
|
18 *
|
cannam@127
|
19 */
|
cannam@127
|
20
|
cannam@127
|
21 #include "dft.h"
|
cannam@127
|
22
|
cannam@127
|
23 typedef struct {
|
cannam@127
|
24 solver super;
|
cannam@127
|
25 } S;
|
cannam@127
|
26
|
cannam@127
|
27 typedef struct {
|
cannam@127
|
28 plan_dft super;
|
cannam@127
|
29 twid *td;
|
cannam@127
|
30 INT n, is, os;
|
cannam@127
|
31 } P;
|
cannam@127
|
32
|
cannam@127
|
33
|
cannam@127
|
34 static void cdot(INT n, const E *x, const R *w,
|
cannam@127
|
35 R *or0, R *oi0, R *or1, R *oi1)
|
cannam@127
|
36 {
|
cannam@127
|
37 INT i;
|
cannam@127
|
38
|
cannam@127
|
39 E rr = x[0], ri = 0, ir = x[1], ii = 0;
|
cannam@127
|
40 x += 2;
|
cannam@127
|
41 for (i = 1; i + i < n; ++i) {
|
cannam@127
|
42 rr += x[0] * w[0];
|
cannam@127
|
43 ir += x[1] * w[0];
|
cannam@127
|
44 ri += x[2] * w[1];
|
cannam@127
|
45 ii += x[3] * w[1];
|
cannam@127
|
46 x += 4; w += 2;
|
cannam@127
|
47 }
|
cannam@127
|
48 *or0 = rr + ii;
|
cannam@127
|
49 *oi0 = ir - ri;
|
cannam@127
|
50 *or1 = rr - ii;
|
cannam@127
|
51 *oi1 = ir + ri;
|
cannam@127
|
52 }
|
cannam@127
|
53
|
cannam@127
|
54 static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o,
|
cannam@127
|
55 R *pr, R *pi)
|
cannam@127
|
56 {
|
cannam@127
|
57 INT i;
|
cannam@127
|
58 E sr, si;
|
cannam@127
|
59 o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2;
|
cannam@127
|
60 for (i = 1; i + i < n; ++i) {
|
cannam@127
|
61 sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]);
|
cannam@127
|
62 si += (o[1] = xi[i * xs] + xi[(n - i) * xs]);
|
cannam@127
|
63 o[2] = xr[i * xs] - xr[(n - i) * xs];
|
cannam@127
|
64 o[3] = xi[i * xs] - xi[(n - i) * xs];
|
cannam@127
|
65 o += 4;
|
cannam@127
|
66 }
|
cannam@127
|
67 *pr = sr;
|
cannam@127
|
68 *pi = si;
|
cannam@127
|
69 }
|
cannam@127
|
70
|
cannam@127
|
71 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
cannam@127
|
72 {
|
cannam@127
|
73 const P *ego = (const P *) ego_;
|
cannam@127
|
74 INT i;
|
cannam@127
|
75 INT n = ego->n, is = ego->is, os = ego->os;
|
cannam@127
|
76 const R *W = ego->td->W;
|
cannam@127
|
77 E *buf;
|
cannam@127
|
78 size_t bufsz = n * 2 * sizeof(E);
|
cannam@127
|
79
|
cannam@127
|
80 BUF_ALLOC(E *, buf, bufsz);
|
cannam@127
|
81 hartley(n, ri, ii, is, buf, ro, io);
|
cannam@127
|
82
|
cannam@127
|
83 for (i = 1; i + i < n; ++i) {
|
cannam@127
|
84 cdot(n, buf, W,
|
cannam@127
|
85 ro + i * os, io + i * os,
|
cannam@127
|
86 ro + (n - i) * os, io + (n - i) * os);
|
cannam@127
|
87 W += n - 1;
|
cannam@127
|
88 }
|
cannam@127
|
89
|
cannam@127
|
90 BUF_FREE(buf, bufsz);
|
cannam@127
|
91 }
|
cannam@127
|
92
|
cannam@127
|
93 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@127
|
94 {
|
cannam@127
|
95 P *ego = (P *) ego_;
|
cannam@127
|
96 static const tw_instr half_tw[] = {
|
cannam@127
|
97 { TW_HALF, 1, 0 },
|
cannam@127
|
98 { TW_NEXT, 1, 0 }
|
cannam@127
|
99 };
|
cannam@127
|
100
|
cannam@127
|
101 X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
|
cannam@127
|
102 (ego->n - 1) / 2);
|
cannam@127
|
103 }
|
cannam@127
|
104
|
cannam@127
|
105 static void print(const plan *ego_, printer *p)
|
cannam@127
|
106 {
|
cannam@127
|
107 const P *ego = (const P *) ego_;
|
cannam@127
|
108
|
cannam@127
|
109 p->print(p, "(dft-generic-%D)", ego->n);
|
cannam@127
|
110 }
|
cannam@127
|
111
|
cannam@127
|
112 static int applicable(const solver *ego, const problem *p_,
|
cannam@127
|
113 const planner *plnr)
|
cannam@127
|
114 {
|
cannam@127
|
115 const problem_dft *p = (const problem_dft *) p_;
|
cannam@127
|
116 UNUSED(ego);
|
cannam@127
|
117
|
cannam@127
|
118 return (1
|
cannam@127
|
119 && p->sz->rnk == 1
|
cannam@127
|
120 && p->vecsz->rnk == 0
|
cannam@127
|
121 && (p->sz->dims[0].n % 2) == 1
|
cannam@127
|
122 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
|
cannam@127
|
123 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
|
cannam@127
|
124 && X(is_prime)(p->sz->dims[0].n)
|
cannam@127
|
125 );
|
cannam@127
|
126 }
|
cannam@127
|
127
|
cannam@127
|
128 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
|
cannam@127
|
129 {
|
cannam@127
|
130 const problem_dft *p;
|
cannam@127
|
131 P *pln;
|
cannam@127
|
132 INT n;
|
cannam@127
|
133
|
cannam@127
|
134 static const plan_adt padt = {
|
cannam@127
|
135 X(dft_solve), awake, print, X(plan_null_destroy)
|
cannam@127
|
136 };
|
cannam@127
|
137
|
cannam@127
|
138 if (!applicable(ego, p_, plnr))
|
cannam@127
|
139 return (plan *)0;
|
cannam@127
|
140
|
cannam@127
|
141 pln = MKPLAN_DFT(P, &padt, apply);
|
cannam@127
|
142
|
cannam@127
|
143 p = (const problem_dft *) p_;
|
cannam@127
|
144 pln->n = n = p->sz->dims[0].n;
|
cannam@127
|
145 pln->is = p->sz->dims[0].is;
|
cannam@127
|
146 pln->os = p->sz->dims[0].os;
|
cannam@127
|
147 pln->td = 0;
|
cannam@127
|
148
|
cannam@127
|
149 pln->super.super.ops.add = (n-1) * 5;
|
cannam@127
|
150 pln->super.super.ops.mul = 0;
|
cannam@127
|
151 pln->super.super.ops.fma = (n-1) * (n-1) ;
|
cannam@127
|
152 #if 0 /* these are nice pipelined sequential loads and should cost nothing */
|
cannam@127
|
153 pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */
|
cannam@127
|
154 #endif
|
cannam@127
|
155
|
cannam@127
|
156 return &(pln->super.super);
|
cannam@127
|
157 }
|
cannam@127
|
158
|
cannam@127
|
159 static solver *mksolver(void)
|
cannam@127
|
160 {
|
cannam@127
|
161 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
|
cannam@127
|
162 S *slv = MKSOLVER(S, &sadt);
|
cannam@127
|
163 return &(slv->super);
|
cannam@127
|
164 }
|
cannam@127
|
165
|
cannam@127
|
166 void X(dft_generic_register)(planner *p)
|
cannam@127
|
167 {
|
cannam@127
|
168 REGISTER_SOLVER(p, mksolver());
|
cannam@127
|
169 }
|