annotate src/fftw-3.3.5/dft/direct.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 7867fa7e1b6b
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21
cannam@127 22 /* direct DFT solver, if we have a codelet */
cannam@127 23
cannam@127 24 #include "dft.h"
cannam@127 25
cannam@127 26 typedef struct {
cannam@127 27 solver super;
cannam@127 28 const kdft_desc *desc;
cannam@127 29 kdft k;
cannam@127 30 int bufferedp;
cannam@127 31 } S;
cannam@127 32
cannam@127 33 typedef struct {
cannam@127 34 plan_dft super;
cannam@127 35
cannam@127 36 stride is, os, bufstride;
cannam@127 37 INT n, vl, ivs, ovs;
cannam@127 38 kdft k;
cannam@127 39 const S *slv;
cannam@127 40 } P;
cannam@127 41
cannam@127 42 static void dobatch(const P *ego, R *ri, R *ii, R *ro, R *io,
cannam@127 43 R *buf, INT batchsz)
cannam@127 44 {
cannam@127 45 X(cpy2d_pair_ci)(ri, ii, buf, buf+1,
cannam@127 46 ego->n, WS(ego->is, 1), WS(ego->bufstride, 1),
cannam@127 47 batchsz, ego->ivs, 2);
cannam@127 48
cannam@127 49 if (IABS(WS(ego->os, 1)) < IABS(ego->ovs)) {
cannam@127 50 /* transform directly to output */
cannam@127 51 ego->k(buf, buf+1, ro, io,
cannam@127 52 ego->bufstride, ego->os, batchsz, 2, ego->ovs);
cannam@127 53 } else {
cannam@127 54 /* transform to buffer and copy back */
cannam@127 55 ego->k(buf, buf+1, buf, buf+1,
cannam@127 56 ego->bufstride, ego->bufstride, batchsz, 2, 2);
cannam@127 57 X(cpy2d_pair_co)(buf, buf+1, ro, io,
cannam@127 58 ego->n, WS(ego->bufstride, 1), WS(ego->os, 1),
cannam@127 59 batchsz, 2, ego->ovs);
cannam@127 60 }
cannam@127 61 }
cannam@127 62
cannam@127 63 static INT compute_batchsize(INT n)
cannam@127 64 {
cannam@127 65 /* round up to multiple of 4 */
cannam@127 66 n += 3;
cannam@127 67 n &= -4;
cannam@127 68
cannam@127 69 return (n + 2);
cannam@127 70 }
cannam@127 71
cannam@127 72 static void apply_buf(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@127 73 {
cannam@127 74 const P *ego = (const P *) ego_;
cannam@127 75 R *buf;
cannam@127 76 INT vl = ego->vl, n = ego->n, batchsz = compute_batchsize(n);
cannam@127 77 INT i;
cannam@127 78 size_t bufsz = n * batchsz * 2 * sizeof(R);
cannam@127 79
cannam@127 80 BUF_ALLOC(R *, buf, bufsz);
cannam@127 81
cannam@127 82 for (i = 0; i < vl - batchsz; i += batchsz) {
cannam@127 83 dobatch(ego, ri, ii, ro, io, buf, batchsz);
cannam@127 84 ri += batchsz * ego->ivs; ii += batchsz * ego->ivs;
cannam@127 85 ro += batchsz * ego->ovs; io += batchsz * ego->ovs;
cannam@127 86 }
cannam@127 87 dobatch(ego, ri, ii, ro, io, buf, vl - i);
cannam@127 88
cannam@127 89 BUF_FREE(buf, bufsz);
cannam@127 90 }
cannam@127 91
cannam@127 92 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@127 93 {
cannam@127 94 const P *ego = (const P *) ego_;
cannam@127 95 ASSERT_ALIGNED_DOUBLE;
cannam@127 96 ego->k(ri, ii, ro, io, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs);
cannam@127 97 }
cannam@127 98
cannam@127 99 static void apply_extra_iter(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@127 100 {
cannam@127 101 const P *ego = (const P *) ego_;
cannam@127 102 INT vl = ego->vl;
cannam@127 103
cannam@127 104 ASSERT_ALIGNED_DOUBLE;
cannam@127 105
cannam@127 106 /* for 4-way SIMD when VL is odd: iterate over an
cannam@127 107 even vector length VL, and then execute the last
cannam@127 108 iteration as a 2-vector with vector stride 0. */
cannam@127 109 ego->k(ri, ii, ro, io, ego->is, ego->os, vl - 1, ego->ivs, ego->ovs);
cannam@127 110
cannam@127 111 ego->k(ri + (vl - 1) * ego->ivs, ii + (vl - 1) * ego->ivs,
cannam@127 112 ro + (vl - 1) * ego->ovs, io + (vl - 1) * ego->ovs,
cannam@127 113 ego->is, ego->os, 1, 0, 0);
cannam@127 114 }
cannam@127 115
cannam@127 116 static void destroy(plan *ego_)
cannam@127 117 {
cannam@127 118 P *ego = (P *) ego_;
cannam@127 119 X(stride_destroy)(ego->is);
cannam@127 120 X(stride_destroy)(ego->os);
cannam@127 121 X(stride_destroy)(ego->bufstride);
cannam@127 122 }
cannam@127 123
cannam@127 124 static void print(const plan *ego_, printer *p)
cannam@127 125 {
cannam@127 126 const P *ego = (const P *) ego_;
cannam@127 127 const S *s = ego->slv;
cannam@127 128 const kdft_desc *d = s->desc;
cannam@127 129
cannam@127 130 if (ego->slv->bufferedp)
cannam@127 131 p->print(p, "(dft-directbuf/%D-%D%v \"%s\")",
cannam@127 132 compute_batchsize(d->sz), d->sz, ego->vl, d->nam);
cannam@127 133 else
cannam@127 134 p->print(p, "(dft-direct-%D%v \"%s\")", d->sz, ego->vl, d->nam);
cannam@127 135 }
cannam@127 136
cannam@127 137 static int applicable_buf(const solver *ego_, const problem *p_,
cannam@127 138 const planner *plnr)
cannam@127 139 {
cannam@127 140 const S *ego = (const S *) ego_;
cannam@127 141 const problem_dft *p = (const problem_dft *) p_;
cannam@127 142 const kdft_desc *d = ego->desc;
cannam@127 143 INT vl;
cannam@127 144 INT ivs, ovs;
cannam@127 145 INT batchsz;
cannam@127 146
cannam@127 147 return (
cannam@127 148 1
cannam@127 149 && p->sz->rnk == 1
cannam@127 150 && p->vecsz->rnk == 1
cannam@127 151 && p->sz->dims[0].n == d->sz
cannam@127 152
cannam@127 153 /* check strides etc */
cannam@127 154 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@127 155
cannam@127 156 /* UGLY if IS <= IVS */
cannam@127 157 && !(NO_UGLYP(plnr) &&
cannam@127 158 X(iabs)(p->sz->dims[0].is) <= X(iabs)(ivs))
cannam@127 159
cannam@127 160 && (batchsz = compute_batchsize(d->sz), 1)
cannam@127 161 && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io,
cannam@127 162 2 * batchsz, p->sz->dims[0].os,
cannam@127 163 batchsz, 2, ovs, plnr))
cannam@127 164 && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io,
cannam@127 165 2 * batchsz, p->sz->dims[0].os,
cannam@127 166 vl % batchsz, 2, ovs, plnr))
cannam@127 167
cannam@127 168
cannam@127 169 && (0
cannam@127 170 /* can operate out-of-place */
cannam@127 171 || p->ri != p->ro
cannam@127 172
cannam@127 173 /* can operate in-place as long as strides are the same */
cannam@127 174 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@127 175
cannam@127 176 /* can do it if the problem fits in the buffer, no matter
cannam@127 177 what the strides are */
cannam@127 178 || vl <= batchsz
cannam@127 179 )
cannam@127 180 );
cannam@127 181 }
cannam@127 182
cannam@127 183 static int applicable(const solver *ego_, const problem *p_,
cannam@127 184 const planner *plnr, int *extra_iterp)
cannam@127 185 {
cannam@127 186 const S *ego = (const S *) ego_;
cannam@127 187 const problem_dft *p = (const problem_dft *) p_;
cannam@127 188 const kdft_desc *d = ego->desc;
cannam@127 189 INT vl;
cannam@127 190 INT ivs, ovs;
cannam@127 191
cannam@127 192 return (
cannam@127 193 1
cannam@127 194 && p->sz->rnk == 1
cannam@127 195 && p->vecsz->rnk <= 1
cannam@127 196 && p->sz->dims[0].n == d->sz
cannam@127 197
cannam@127 198 /* check strides etc */
cannam@127 199 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@127 200
cannam@127 201 && ((*extra_iterp = 0,
cannam@127 202 (d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
cannam@127 203 p->sz->dims[0].is, p->sz->dims[0].os,
cannam@127 204 vl, ivs, ovs, plnr)))
cannam@127 205 ||
cannam@127 206 (*extra_iterp = 1,
cannam@127 207 ((d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
cannam@127 208 p->sz->dims[0].is, p->sz->dims[0].os,
cannam@127 209 vl - 1, ivs, ovs, plnr))
cannam@127 210 &&
cannam@127 211 (d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
cannam@127 212 p->sz->dims[0].is, p->sz->dims[0].os,
cannam@127 213 2, 0, 0, plnr)))))
cannam@127 214
cannam@127 215 && (0
cannam@127 216 /* can operate out-of-place */
cannam@127 217 || p->ri != p->ro
cannam@127 218
cannam@127 219 /* can always compute one transform */
cannam@127 220 || vl == 1
cannam@127 221
cannam@127 222 /* can operate in-place as long as strides are the same */
cannam@127 223 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@127 224 )
cannam@127 225 );
cannam@127 226 }
cannam@127 227
cannam@127 228
cannam@127 229 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@127 230 {
cannam@127 231 const S *ego = (const S *) ego_;
cannam@127 232 P *pln;
cannam@127 233 const problem_dft *p;
cannam@127 234 iodim *d;
cannam@127 235 const kdft_desc *e = ego->desc;
cannam@127 236
cannam@127 237 static const plan_adt padt = {
cannam@127 238 X(dft_solve), X(null_awake), print, destroy
cannam@127 239 };
cannam@127 240
cannam@127 241 UNUSED(plnr);
cannam@127 242
cannam@127 243 if (ego->bufferedp) {
cannam@127 244 if (!applicable_buf(ego_, p_, plnr))
cannam@127 245 return (plan *)0;
cannam@127 246 pln = MKPLAN_DFT(P, &padt, apply_buf);
cannam@127 247 } else {
cannam@127 248 int extra_iterp = 0;
cannam@127 249 if (!applicable(ego_, p_, plnr, &extra_iterp))
cannam@127 250 return (plan *)0;
cannam@127 251 pln = MKPLAN_DFT(P, &padt, extra_iterp ? apply_extra_iter : apply);
cannam@127 252 }
cannam@127 253
cannam@127 254 p = (const problem_dft *) p_;
cannam@127 255 d = p->sz->dims;
cannam@127 256 pln->k = ego->k;
cannam@127 257 pln->n = d[0].n;
cannam@127 258 pln->is = X(mkstride)(pln->n, d[0].is);
cannam@127 259 pln->os = X(mkstride)(pln->n, d[0].os);
cannam@127 260 pln->bufstride = X(mkstride)(pln->n, 2 * compute_batchsize(pln->n));
cannam@127 261
cannam@127 262 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@127 263 pln->slv = ego;
cannam@127 264
cannam@127 265 X(ops_zero)(&pln->super.super.ops);
cannam@127 266 X(ops_madd2)(pln->vl / e->genus->vl, &e->ops, &pln->super.super.ops);
cannam@127 267
cannam@127 268 if (ego->bufferedp)
cannam@127 269 pln->super.super.ops.other += 4 * pln->n * pln->vl;
cannam@127 270
cannam@127 271 pln->super.super.could_prune_now_p = !ego->bufferedp;
cannam@127 272 return &(pln->super.super);
cannam@127 273 }
cannam@127 274
cannam@127 275 static solver *mksolver(kdft k, const kdft_desc *desc, int bufferedp)
cannam@127 276 {
cannam@127 277 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
cannam@127 278 S *slv = MKSOLVER(S, &sadt);
cannam@127 279 slv->k = k;
cannam@127 280 slv->desc = desc;
cannam@127 281 slv->bufferedp = bufferedp;
cannam@127 282 return &(slv->super);
cannam@127 283 }
cannam@127 284
cannam@127 285 solver *X(mksolver_dft_direct)(kdft k, const kdft_desc *desc)
cannam@127 286 {
cannam@127 287 return mksolver(k, desc, 0);
cannam@127 288 }
cannam@127 289
cannam@127 290 solver *X(mksolver_dft_directbuf)(kdft k, const kdft_desc *desc)
cannam@127 291 {
cannam@127 292 return mksolver(k, desc, 1);
cannam@127 293 }