annotate src/fftw-3.3.3/simd-support/simd-sse2.h @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
cannam@95 22 # error "SSE/SSE2 only works in single/double precision"
cannam@95 23 #endif
cannam@95 24
cannam@95 25 #ifdef FFTW_SINGLE
cannam@95 26 # define DS(d,s) s /* single-precision option */
cannam@95 27 # define SUFF(name) name ## s
cannam@95 28 #else
cannam@95 29 # define DS(d,s) d /* double-precision option */
cannam@95 30 # define SUFF(name) name ## d
cannam@95 31 #endif
cannam@95 32
cannam@95 33 #define SIMD_SUFFIX _sse2 /* for renaming */
cannam@95 34 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
cannam@95 35 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
cannam@95 36 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
cannam@95 37
cannam@95 38 #if defined(__GNUC__) && !defined(FFTW_SINGLE) && !defined(__SSE2__)
cannam@95 39 # error "compiling simd-sse2.h in double precision without -msse2"
cannam@95 40 #elif defined(__GNUC__) && defined(FFTW_SINGLE) && !defined(__SSE__)
cannam@95 41 # error "compiling simd-sse2.h in single precision without -msse"
cannam@95 42 #endif
cannam@95 43
cannam@95 44 #ifdef _MSC_VER
cannam@95 45 #ifndef inline
cannam@95 46 #define inline __inline
cannam@95 47 #endif
cannam@95 48 #endif
cannam@95 49
cannam@95 50 /* some versions of glibc's sys/cdefs.h define __inline to be empty,
cannam@95 51 which is wrong because emmintrin.h defines several inline
cannam@95 52 procedures */
cannam@95 53 #ifndef _MSC_VER
cannam@95 54 #undef __inline
cannam@95 55 #endif
cannam@95 56
cannam@95 57 #ifdef FFTW_SINGLE
cannam@95 58 # include <xmmintrin.h>
cannam@95 59 #else
cannam@95 60 # include <emmintrin.h>
cannam@95 61 #endif
cannam@95 62
cannam@95 63 typedef DS(__m128d,__m128) V;
cannam@95 64 #define VADD SUFF(_mm_add_p)
cannam@95 65 #define VSUB SUFF(_mm_sub_p)
cannam@95 66 #define VMUL SUFF(_mm_mul_p)
cannam@95 67 #define VXOR SUFF(_mm_xor_p)
cannam@95 68 #define SHUF SUFF(_mm_shuffle_p)
cannam@95 69 #define UNPCKL SUFF(_mm_unpacklo_p)
cannam@95 70 #define UNPCKH SUFF(_mm_unpackhi_p)
cannam@95 71
cannam@95 72 #define SHUFVALS(fp0,fp1,fp2,fp3) \
cannam@95 73 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
cannam@95 74
cannam@95 75 #define VDUPL(x) DS(UNPCKL(x, x), SHUF(x, x, SHUFVALS(0, 0, 2, 2)))
cannam@95 76 #define VDUPH(x) DS(UNPCKH(x, x), SHUF(x, x, SHUFVALS(1, 1, 3, 3)))
cannam@95 77 #define STOREH(a, v) DS(_mm_storeh_pd(a, v), _mm_storeh_pi((__m64 *)(a), v))
cannam@95 78 #define STOREL(a, v) DS(_mm_storel_pd(a, v), _mm_storel_pi((__m64 *)(a), v))
cannam@95 79
cannam@95 80
cannam@95 81 #ifdef __GNUC__
cannam@95 82 /*
cannam@95 83 * gcc-3.3 generates slow code for mm_set_ps (write all elements to
cannam@95 84 * the stack and load __m128 from the stack).
cannam@95 85 *
cannam@95 86 * gcc-3.[34] generates slow code for mm_set_ps1 (load into low element
cannam@95 87 * and shuffle).
cannam@95 88 *
cannam@95 89 * This hack forces gcc to generate a constant __m128 at compile time.
cannam@95 90 */
cannam@95 91 union rvec {
cannam@95 92 R r[DS(2,4)];
cannam@95 93 V v;
cannam@95 94 };
cannam@95 95
cannam@95 96 # ifdef FFTW_SINGLE
cannam@95 97 # define DVK(var, val) V var = __extension__ ({ \
cannam@95 98 static const union rvec _var = { {val,val,val,val} }; _var.v; })
cannam@95 99 # else
cannam@95 100 # define DVK(var, val) V var = __extension__ ({ \
cannam@95 101 static const union rvec _var = { {val,val} }; _var.v; })
cannam@95 102 # endif
cannam@95 103 # define LDK(x) x
cannam@95 104 #else
cannam@95 105 # define DVK(var, val) const R var = K(val)
cannam@95 106 # define LDK(x) DS(_mm_set1_pd,_mm_set_ps1)(x)
cannam@95 107 #endif
cannam@95 108
cannam@95 109 union uvec {
cannam@95 110 unsigned u[4];
cannam@95 111 V v;
cannam@95 112 };
cannam@95 113
cannam@95 114 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
cannam@95 115 {
cannam@95 116 (void)aligned_like; /* UNUSED */
cannam@95 117 (void)ivs; /* UNUSED */
cannam@95 118 return *(const V *)x;
cannam@95 119 }
cannam@95 120
cannam@95 121 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
cannam@95 122 {
cannam@95 123 (void)aligned_like; /* UNUSED */
cannam@95 124 (void)ovs; /* UNUSED */
cannam@95 125 *(V *)x = v;
cannam@95 126 }
cannam@95 127
cannam@95 128 #ifdef FFTW_SINGLE
cannam@95 129
cannam@95 130 # ifdef _MSC_VER
cannam@95 131 /* Temporarily disable the warning "uninitialized local variable
cannam@95 132 'name' used" and runtime checks for using a variable before it is
cannam@95 133 defined which is erroneously triggered by the LOADL0 / LOADH macros
cannam@95 134 as they only modify VAL partly each. */
cannam@95 135 # pragma warning(disable : 4700)
cannam@95 136 # pragma runtime_checks("u", off)
cannam@95 137 # endif
cannam@95 138
cannam@95 139 static inline V LD(const R *x, INT ivs, const R *aligned_like)
cannam@95 140 {
cannam@95 141 V var;
cannam@95 142 (void)aligned_like; /* UNUSED */
cannam@95 143 # ifdef __GNUC__
cannam@95 144 /* We use inline asm because gcc-3.x generates slow code for
cannam@95 145 _mm_loadh_pi(). gcc-3.x insists upon having an existing variable for
cannam@95 146 VAL, which is however never used. Thus, it generates code to move
cannam@95 147 values in and out the variable. Worse still, gcc-4.0 stores VAL on
cannam@95 148 the stack, causing valgrind to complain about uninitialized reads. */
cannam@95 149 __asm__("movlps %1, %0\n\tmovhps %2, %0"
cannam@95 150 : "=x"(var) : "m"(x[0]), "m"(x[ivs]));
cannam@95 151 # else
cannam@95 152 # define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
cannam@95 153 # define LOADL0(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
cannam@95 154 var = LOADL0(x, var);
cannam@95 155 var = LOADH(x + ivs, var);
cannam@95 156 # endif
cannam@95 157 return var;
cannam@95 158 }
cannam@95 159
cannam@95 160 # ifdef _MSC_VER
cannam@95 161 # pragma warning(default : 4700)
cannam@95 162 # pragma runtime_checks("u", restore)
cannam@95 163 # endif
cannam@95 164
cannam@95 165 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
cannam@95 166 {
cannam@95 167 (void)aligned_like; /* UNUSED */
cannam@95 168 /* WARNING: the extra_iter hack depends upon STOREL occurring
cannam@95 169 after STOREH */
cannam@95 170 STOREH(x + ovs, v);
cannam@95 171 STOREL(x, v);
cannam@95 172 }
cannam@95 173
cannam@95 174 #else /* ! FFTW_SINGLE */
cannam@95 175 # define LD LDA
cannam@95 176 # define ST STA
cannam@95 177 #endif
cannam@95 178
cannam@95 179 #define STM2 DS(STA,ST)
cannam@95 180 #define STN2(x, v0, v1, ovs) /* nop */
cannam@95 181
cannam@95 182 #ifdef FFTW_SINGLE
cannam@95 183 # define STM4(x, v, ovs, aligned_like) /* no-op */
cannam@95 184 /* STN4 is a macro, not a function, thanks to Visual C++ developers
cannam@95 185 deciding "it would be infrequent that people would want to pass more
cannam@95 186 than 3 [__m128 parameters] by value." 3 parameters ought to be enough
cannam@95 187 for anybody. */
cannam@95 188 # define STN4(x, v0, v1, v2, v3, ovs) \
cannam@95 189 { \
cannam@95 190 V xxx0, xxx1, xxx2, xxx3; \
cannam@95 191 xxx0 = UNPCKL(v0, v2); \
cannam@95 192 xxx1 = UNPCKH(v0, v2); \
cannam@95 193 xxx2 = UNPCKL(v1, v3); \
cannam@95 194 xxx3 = UNPCKH(v1, v3); \
cannam@95 195 STA(x, UNPCKL(xxx0, xxx2), 0, 0); \
cannam@95 196 STA(x + ovs, UNPCKH(xxx0, xxx2), 0, 0); \
cannam@95 197 STA(x + 2 * ovs, UNPCKL(xxx1, xxx3), 0, 0); \
cannam@95 198 STA(x + 3 * ovs, UNPCKH(xxx1, xxx3), 0, 0); \
cannam@95 199 }
cannam@95 200 #else /* !FFTW_SINGLE */
cannam@95 201 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
cannam@95 202 {
cannam@95 203 (void)aligned_like; /* UNUSED */
cannam@95 204 STOREL(x, v);
cannam@95 205 STOREH(x + ovs, v);
cannam@95 206 }
cannam@95 207 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
cannam@95 208 #endif
cannam@95 209
cannam@95 210 static inline V FLIP_RI(V x)
cannam@95 211 {
cannam@95 212 return SHUF(x, x, DS(1, SHUFVALS(1, 0, 3, 2)));
cannam@95 213 }
cannam@95 214
cannam@95 215 extern const union uvec X(sse2_pm);
cannam@95 216 static inline V VCONJ(V x)
cannam@95 217 {
cannam@95 218 return VXOR(X(sse2_pm).v, x);
cannam@95 219 }
cannam@95 220
cannam@95 221 static inline V VBYI(V x)
cannam@95 222 {
cannam@95 223 x = VCONJ(x);
cannam@95 224 x = FLIP_RI(x);
cannam@95 225 return x;
cannam@95 226 }
cannam@95 227
cannam@95 228 /* FMA support */
cannam@95 229 #define VFMA(a, b, c) VADD(c, VMUL(a, b))
cannam@95 230 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
cannam@95 231 #define VFMS(a, b, c) VSUB(VMUL(a, b), c)
cannam@95 232 #define VFMAI(b, c) VADD(c, VBYI(b))
cannam@95 233 #define VFNMSI(b, c) VSUB(c, VBYI(b))
cannam@95 234 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
cannam@95 235 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
cannam@95 236 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
cannam@95 237
cannam@95 238 static inline V VZMUL(V tx, V sr)
cannam@95 239 {
cannam@95 240 V tr = VDUPL(tx);
cannam@95 241 V ti = VDUPH(tx);
cannam@95 242 tr = VMUL(sr, tr);
cannam@95 243 sr = VBYI(sr);
cannam@95 244 return VFMA(ti, sr, tr);
cannam@95 245 }
cannam@95 246
cannam@95 247 static inline V VZMULJ(V tx, V sr)
cannam@95 248 {
cannam@95 249 V tr = VDUPL(tx);
cannam@95 250 V ti = VDUPH(tx);
cannam@95 251 tr = VMUL(sr, tr);
cannam@95 252 sr = VBYI(sr);
cannam@95 253 return VFNMS(ti, sr, tr);
cannam@95 254 }
cannam@95 255
cannam@95 256 static inline V VZMULI(V tx, V sr)
cannam@95 257 {
cannam@95 258 V tr = VDUPL(tx);
cannam@95 259 V ti = VDUPH(tx);
cannam@95 260 ti = VMUL(ti, sr);
cannam@95 261 sr = VBYI(sr);
cannam@95 262 return VFMS(tr, sr, ti);
cannam@95 263 }
cannam@95 264
cannam@95 265 static inline V VZMULIJ(V tx, V sr)
cannam@95 266 {
cannam@95 267 V tr = VDUPL(tx);
cannam@95 268 V ti = VDUPH(tx);
cannam@95 269 ti = VMUL(ti, sr);
cannam@95 270 sr = VBYI(sr);
cannam@95 271 return VFMA(tr, sr, ti);
cannam@95 272 }
cannam@95 273
cannam@95 274 /* twiddle storage #1: compact, slower */
cannam@95 275 #ifdef FFTW_SINGLE
cannam@95 276 # define VTW1(v,x) \
cannam@95 277 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
cannam@95 278 static inline V BYTW1(const R *t, V sr)
cannam@95 279 {
cannam@95 280 const V *twp = (const V *)t;
cannam@95 281 V tx = twp[0];
cannam@95 282 V tr = UNPCKL(tx, tx);
cannam@95 283 V ti = UNPCKH(tx, tx);
cannam@95 284 tr = VMUL(tr, sr);
cannam@95 285 sr = VBYI(sr);
cannam@95 286 return VFMA(ti, sr, tr);
cannam@95 287 }
cannam@95 288 static inline V BYTWJ1(const R *t, V sr)
cannam@95 289 {
cannam@95 290 const V *twp = (const V *)t;
cannam@95 291 V tx = twp[0];
cannam@95 292 V tr = UNPCKL(tx, tx);
cannam@95 293 V ti = UNPCKH(tx, tx);
cannam@95 294 tr = VMUL(tr, sr);
cannam@95 295 sr = VBYI(sr);
cannam@95 296 return VFNMS(ti, sr, tr);
cannam@95 297 }
cannam@95 298 #else /* !FFTW_SINGLE */
cannam@95 299 # define VTW1(v,x) {TW_CEXP, v, x}
cannam@95 300 static inline V BYTW1(const R *t, V sr)
cannam@95 301 {
cannam@95 302 V tx = LD(t, 1, t);
cannam@95 303 return VZMUL(tx, sr);
cannam@95 304 }
cannam@95 305 static inline V BYTWJ1(const R *t, V sr)
cannam@95 306 {
cannam@95 307 V tx = LD(t, 1, t);
cannam@95 308 return VZMULJ(tx, sr);
cannam@95 309 }
cannam@95 310 #endif
cannam@95 311 #define TWVL1 (VL)
cannam@95 312
cannam@95 313 /* twiddle storage #2: twice the space, faster (when in cache) */
cannam@95 314 #ifdef FFTW_SINGLE
cannam@95 315 # define VTW2(v,x) \
cannam@95 316 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
cannam@95 317 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
cannam@95 318 #else /* !FFTW_SINGLE */
cannam@95 319 # define VTW2(v,x) \
cannam@95 320 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
cannam@95 321 #endif
cannam@95 322 #define TWVL2 (2 * VL)
cannam@95 323 static inline V BYTW2(const R *t, V sr)
cannam@95 324 {
cannam@95 325 const V *twp = (const V *)t;
cannam@95 326 V si = FLIP_RI(sr);
cannam@95 327 V tr = twp[0], ti = twp[1];
cannam@95 328 return VFMA(tr, sr, VMUL(ti, si));
cannam@95 329 }
cannam@95 330 static inline V BYTWJ2(const R *t, V sr)
cannam@95 331 {
cannam@95 332 const V *twp = (const V *)t;
cannam@95 333 V si = FLIP_RI(sr);
cannam@95 334 V tr = twp[0], ti = twp[1];
cannam@95 335 return VFNMS(ti, si, VMUL(tr, sr));
cannam@95 336 }
cannam@95 337
cannam@95 338 /* twiddle storage #3 */
cannam@95 339 #ifdef FFTW_SINGLE
cannam@95 340 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
cannam@95 341 # define TWVL3 (VL)
cannam@95 342 #else
cannam@95 343 # define VTW3(v,x) VTW1(v,x)
cannam@95 344 # define TWVL3 TWVL1
cannam@95 345 #endif
cannam@95 346
cannam@95 347 /* twiddle storage for split arrays */
cannam@95 348 #ifdef FFTW_SINGLE
cannam@95 349 # define VTWS(v,x) \
cannam@95 350 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
cannam@95 351 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
cannam@95 352 #else
cannam@95 353 # define VTWS(v,x) \
cannam@95 354 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
cannam@95 355 #endif
cannam@95 356 #define TWVLS (2 * VL)
cannam@95 357
cannam@95 358 #define VLEAVE() /* nothing */
cannam@95 359
cannam@95 360 #include "simd-common.h"