cannam@95
|
1 /*
|
cannam@95
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
cannam@95
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
cannam@95
|
4 *
|
cannam@95
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@95
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@95
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@95
|
8 * (at your option) any later version.
|
cannam@95
|
9 *
|
cannam@95
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@95
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@95
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@95
|
13 * GNU General Public License for more details.
|
cannam@95
|
14 *
|
cannam@95
|
15 * You should have received a copy of the GNU General Public License
|
cannam@95
|
16 * along with this program; if not, write to the Free Software
|
cannam@95
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@95
|
18 *
|
cannam@95
|
19 */
|
cannam@95
|
20
|
cannam@95
|
21 #ifndef FFTW_SINGLE
|
cannam@95
|
22 #error "NEON only works in single precision"
|
cannam@95
|
23 #endif
|
cannam@95
|
24
|
cannam@95
|
25 /* define these unconditionally, because they are used by
|
cannam@95
|
26 taint.c which is compiled without neon */
|
cannam@95
|
27 #define SIMD_SUFFIX _neon /* for renaming */
|
cannam@95
|
28 #define VL 2 /* SIMD complex vector length */
|
cannam@95
|
29 #define SIMD_VSTRIDE_OKA(x) ((x) == 2)
|
cannam@95
|
30 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
|
cannam@95
|
31
|
cannam@95
|
32 #if defined(__GNUC__) && !defined(__ARM_NEON__)
|
cannam@95
|
33 #error "compiling simd-neon.h requires -mfpu=neon or equivalent"
|
cannam@95
|
34 #endif
|
cannam@95
|
35
|
cannam@95
|
36 #include <arm_neon.h>
|
cannam@95
|
37
|
cannam@95
|
38 /* FIXME: I am not sure whether this code assumes little-endian
|
cannam@95
|
39 ordering. VLIT may or may not be wrong for big-endian systems. */
|
cannam@95
|
40 typedef float32x4_t V;
|
cannam@95
|
41
|
cannam@95
|
42 #define VLIT(x0, x1, x2, x3) {x0, x1, x2, x3}
|
cannam@95
|
43 #define LDK(x) x
|
cannam@95
|
44 #define DVK(var, val) const V var = VLIT(val, val, val, val)
|
cannam@95
|
45
|
cannam@95
|
46 /* NEON has FMA, but a three-operand FMA is not too useful
|
cannam@95
|
47 for FFT purposes. We normally compute
|
cannam@95
|
48
|
cannam@95
|
49 t0=a+b*c
|
cannam@95
|
50 t1=a-b*c
|
cannam@95
|
51
|
cannam@95
|
52 In a three-operand instruction set this translates into
|
cannam@95
|
53
|
cannam@95
|
54 t0=a
|
cannam@95
|
55 t0+=b*c
|
cannam@95
|
56 t1=a
|
cannam@95
|
57 t1-=b*c
|
cannam@95
|
58
|
cannam@95
|
59 At least one move must be implemented, negating the advantage of
|
cannam@95
|
60 the FMA in the first place. At least some versions of gcc generate
|
cannam@95
|
61 both moves. So we are better off generating t=b*c;t0=a+t;t1=a-t;*/
|
cannam@95
|
62 #if HAVE_FMA
|
cannam@95
|
63 #warning "--enable-fma on NEON is probably a bad idea (see source code)"
|
cannam@95
|
64 #endif
|
cannam@95
|
65
|
cannam@95
|
66 #define VADD(a, b) vaddq_f32(a, b)
|
cannam@95
|
67 #define VSUB(a, b) vsubq_f32(a, b)
|
cannam@95
|
68 #define VMUL(a, b) vmulq_f32(a, b)
|
cannam@95
|
69 #define VFMA(a, b, c) vmlaq_f32(c, a, b) /* a*b+c */
|
cannam@95
|
70 #define VFNMS(a, b, c) vmlsq_f32(c, a, b) /* FNMS=-(a*b-c) in powerpc terminology; MLS=c-a*b
|
cannam@95
|
71 in ARM terminology */
|
cannam@95
|
72 #define VFMS(a, b, c) VSUB(VMUL(a, b), c) /* FMS=a*b-c in powerpc terminology; no equivalent
|
cannam@95
|
73 arm instruction (?) */
|
cannam@95
|
74
|
cannam@95
|
75 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
|
cannam@95
|
76 {
|
cannam@95
|
77 (void) aligned_like; /* UNUSED */
|
cannam@95
|
78 return vld1q_f32((const float32_t *)x);
|
cannam@95
|
79 }
|
cannam@95
|
80
|
cannam@95
|
81 static inline V LD(const R *x, INT ivs, const R *aligned_like)
|
cannam@95
|
82 {
|
cannam@95
|
83 (void) aligned_like; /* UNUSED */
|
cannam@95
|
84 return vcombine_f32(vld1_f32((float32_t *)x), vld1_f32((float32_t *)(x + ivs)));
|
cannam@95
|
85 }
|
cannam@95
|
86
|
cannam@95
|
87 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@95
|
88 {
|
cannam@95
|
89 (void) aligned_like; /* UNUSED */
|
cannam@95
|
90 vst1q_f32((float32_t *)x, v);
|
cannam@95
|
91 }
|
cannam@95
|
92
|
cannam@95
|
93 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@95
|
94 {
|
cannam@95
|
95 (void) aligned_like; /* UNUSED */
|
cannam@95
|
96 /* WARNING: the extra_iter hack depends upon store-low occurring
|
cannam@95
|
97 after store-high */
|
cannam@95
|
98 vst1_f32((float32_t *)(x + ovs), vget_high_f32(v));
|
cannam@95
|
99 vst1_f32((float32_t *)x, vget_low_f32(v));
|
cannam@95
|
100 }
|
cannam@95
|
101
|
cannam@95
|
102 /* 2x2 complex transpose and store */
|
cannam@95
|
103 #define STM2 ST
|
cannam@95
|
104 #define STN2(x, v0, v1, ovs) /* nop */
|
cannam@95
|
105
|
cannam@95
|
106 /* store and 4x4 real transpose */
|
cannam@95
|
107 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
|
cannam@95
|
108 {
|
cannam@95
|
109 (void) aligned_like; /* UNUSED */
|
cannam@95
|
110 vst1_lane_f32((float32_t *)(x) , vget_low_f32(v), 0);
|
cannam@95
|
111 vst1_lane_f32((float32_t *)(x + ovs), vget_low_f32(v), 1);
|
cannam@95
|
112 vst1_lane_f32((float32_t *)(x + 2 * ovs), vget_high_f32(v), 0);
|
cannam@95
|
113 vst1_lane_f32((float32_t *)(x + 3 * ovs), vget_high_f32(v), 1);
|
cannam@95
|
114 }
|
cannam@95
|
115 #define STN4(x, v0, v1, v2, v3, ovs) /* use STM4 */
|
cannam@95
|
116
|
cannam@95
|
117 #define FLIP_RI(x) vrev64q_f32(x)
|
cannam@95
|
118
|
cannam@95
|
119 static inline V VCONJ(V x)
|
cannam@95
|
120 {
|
cannam@95
|
121 #if 1
|
cannam@95
|
122 static const uint32x4_t pm = {0, 0x80000000u, 0, 0x80000000u};
|
cannam@95
|
123 return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(x), pm));
|
cannam@95
|
124 #else
|
cannam@95
|
125 const V pm = VLIT(1.0, -1.0, 1.0, -1.0);
|
cannam@95
|
126 return VMUL(x, pm);
|
cannam@95
|
127 #endif
|
cannam@95
|
128 }
|
cannam@95
|
129
|
cannam@95
|
130 static inline V VBYI(V x)
|
cannam@95
|
131 {
|
cannam@95
|
132 return FLIP_RI(VCONJ(x));
|
cannam@95
|
133 }
|
cannam@95
|
134
|
cannam@95
|
135 static inline V VFMAI(V b, V c)
|
cannam@95
|
136 {
|
cannam@95
|
137 const V mp = VLIT(-1.0, 1.0, -1.0, 1.0);
|
cannam@95
|
138 return VFMA(FLIP_RI(b), mp, c);
|
cannam@95
|
139 }
|
cannam@95
|
140
|
cannam@95
|
141 static inline V VFNMSI(V b, V c)
|
cannam@95
|
142 {
|
cannam@95
|
143 const V mp = VLIT(-1.0, 1.0, -1.0, 1.0);
|
cannam@95
|
144 return VFNMS(FLIP_RI(b), mp, c);
|
cannam@95
|
145 }
|
cannam@95
|
146
|
cannam@95
|
147 static inline V VFMACONJ(V b, V c)
|
cannam@95
|
148 {
|
cannam@95
|
149 const V pm = VLIT(1.0, -1.0, 1.0, -1.0);
|
cannam@95
|
150 return VFMA(b, pm, c);
|
cannam@95
|
151 }
|
cannam@95
|
152
|
cannam@95
|
153 static inline V VFNMSCONJ(V b, V c)
|
cannam@95
|
154 {
|
cannam@95
|
155 const V pm = VLIT(1.0, -1.0, 1.0, -1.0);
|
cannam@95
|
156 return VFNMS(b, pm, c);
|
cannam@95
|
157 }
|
cannam@95
|
158
|
cannam@95
|
159 static inline V VFMSCONJ(V b, V c)
|
cannam@95
|
160 {
|
cannam@95
|
161 return VSUB(VCONJ(b), c);
|
cannam@95
|
162 }
|
cannam@95
|
163
|
cannam@95
|
164 #if 1
|
cannam@95
|
165 #define VEXTRACT_REIM(tr, ti, tx) \
|
cannam@95
|
166 { \
|
cannam@95
|
167 tr = vcombine_f32(vdup_lane_f32(vget_low_f32(tx), 0), \
|
cannam@95
|
168 vdup_lane_f32(vget_high_f32(tx), 0)); \
|
cannam@95
|
169 ti = vcombine_f32(vdup_lane_f32(vget_low_f32(tx), 1), \
|
cannam@95
|
170 vdup_lane_f32(vget_high_f32(tx), 1)); \
|
cannam@95
|
171 }
|
cannam@95
|
172 #else
|
cannam@95
|
173 /* this alternative might be faster in an ideal world, but gcc likes
|
cannam@95
|
174 to spill VVV onto the stack */
|
cannam@95
|
175 #define VEXTRACT_REIM(tr, ti, tx) \
|
cannam@95
|
176 { \
|
cannam@95
|
177 float32x4x2_t vvv = vtrnq_f32(tx, tx); \
|
cannam@95
|
178 tr = vvv.val[0]; \
|
cannam@95
|
179 ti = vvv.val[1]; \
|
cannam@95
|
180 }
|
cannam@95
|
181 #endif
|
cannam@95
|
182
|
cannam@95
|
183 static inline V VZMUL(V tx, V sr)
|
cannam@95
|
184 {
|
cannam@95
|
185 V tr, ti;
|
cannam@95
|
186 VEXTRACT_REIM(tr, ti, tx);
|
cannam@95
|
187 tr = VMUL(sr, tr);
|
cannam@95
|
188 sr = VBYI(sr);
|
cannam@95
|
189 return VFMA(ti, sr, tr);
|
cannam@95
|
190 }
|
cannam@95
|
191
|
cannam@95
|
192 static inline V VZMULJ(V tx, V sr)
|
cannam@95
|
193 {
|
cannam@95
|
194 V tr, ti;
|
cannam@95
|
195 VEXTRACT_REIM(tr, ti, tx);
|
cannam@95
|
196 tr = VMUL(sr, tr);
|
cannam@95
|
197 sr = VBYI(sr);
|
cannam@95
|
198 return VFNMS(ti, sr, tr);
|
cannam@95
|
199 }
|
cannam@95
|
200
|
cannam@95
|
201 static inline V VZMULI(V tx, V sr)
|
cannam@95
|
202 {
|
cannam@95
|
203 V tr, ti;
|
cannam@95
|
204 VEXTRACT_REIM(tr, ti, tx);
|
cannam@95
|
205 ti = VMUL(ti, sr);
|
cannam@95
|
206 sr = VBYI(sr);
|
cannam@95
|
207 return VFMS(tr, sr, ti);
|
cannam@95
|
208 }
|
cannam@95
|
209
|
cannam@95
|
210 static inline V VZMULIJ(V tx, V sr)
|
cannam@95
|
211 {
|
cannam@95
|
212 V tr, ti;
|
cannam@95
|
213 VEXTRACT_REIM(tr, ti, tx);
|
cannam@95
|
214 ti = VMUL(ti, sr);
|
cannam@95
|
215 sr = VBYI(sr);
|
cannam@95
|
216 return VFMA(tr, sr, ti);
|
cannam@95
|
217 }
|
cannam@95
|
218
|
cannam@95
|
219 /* twiddle storage #1: compact, slower */
|
cannam@95
|
220 #define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
|
cannam@95
|
221 #define TWVL1 VL
|
cannam@95
|
222 static inline V BYTW1(const R *t, V sr)
|
cannam@95
|
223 {
|
cannam@95
|
224 V tx = LDA(t, 2, 0);
|
cannam@95
|
225 return VZMUL(tx, sr);
|
cannam@95
|
226 }
|
cannam@95
|
227
|
cannam@95
|
228 static inline V BYTWJ1(const R *t, V sr)
|
cannam@95
|
229 {
|
cannam@95
|
230 V tx = LDA(t, 2, 0);
|
cannam@95
|
231 return VZMULJ(tx, sr);
|
cannam@95
|
232 }
|
cannam@95
|
233
|
cannam@95
|
234 /* twiddle storage #2: twice the space, faster (when in cache) */
|
cannam@95
|
235 # define VTW2(v,x) \
|
cannam@95
|
236 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
|
cannam@95
|
237 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
|
cannam@95
|
238 #define TWVL2 (2 * VL)
|
cannam@95
|
239
|
cannam@95
|
240 static inline V BYTW2(const R *t, V sr)
|
cannam@95
|
241 {
|
cannam@95
|
242 V si = FLIP_RI(sr);
|
cannam@95
|
243 V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0);
|
cannam@95
|
244 return VFMA(ti, si, VMUL(tr, sr));
|
cannam@95
|
245 }
|
cannam@95
|
246
|
cannam@95
|
247 static inline V BYTWJ2(const R *t, V sr)
|
cannam@95
|
248 {
|
cannam@95
|
249 V si = FLIP_RI(sr);
|
cannam@95
|
250 V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0);
|
cannam@95
|
251 return VFNMS(ti, si, VMUL(tr, sr));
|
cannam@95
|
252 }
|
cannam@95
|
253
|
cannam@95
|
254 /* twiddle storage #3 */
|
cannam@95
|
255 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
|
cannam@95
|
256 # define TWVL3 (VL)
|
cannam@95
|
257
|
cannam@95
|
258 /* twiddle storage for split arrays */
|
cannam@95
|
259 # define VTWS(v,x) \
|
cannam@95
|
260 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
|
cannam@95
|
261 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
|
cannam@95
|
262 #define TWVLS (2 * VL)
|
cannam@95
|
263
|
cannam@95
|
264 #define VLEAVE() /* nothing */
|
cannam@95
|
265
|
cannam@95
|
266 #include "simd-common.h"
|