annotate src/fftw-3.3.3/reodft/reodft11e-radix2.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21
cannam@95 22 /* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems
cannam@95 23 of half the size, plus some pre/post-processing. Use a trick from:
cannam@95 24
cannam@95 25 Zhongde Wang, "On computing the discrete Fourier and cosine transforms,"
cannam@95 26 IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985).
cannam@95 27
cannam@95 28 to re-express as a pair of half-size REDFT01 (DCT-III) problems. Our
cannam@95 29 implementation looks quite a bit different from the algorithm described
cannam@95 30 in the paper because we combined the paper's pre/post-processing with
cannam@95 31 the pre/post-processing used to turn REDFT01 into R2HC. (Also, the
cannam@95 32 paper uses a DCT/DST pair, but we turn the DST into a DCT via the
cannam@95 33 usual reordering/sign-flip trick. We additionally combined a couple
cannam@95 34 of the matrices/transformations of the paper into a single pass.)
cannam@95 35
cannam@95 36 NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho
cannam@95 37 that turned out to have numerical problems; see reodft11e-r2hc.c.
cannam@95 38
cannam@95 39 (For odd sizes, see reodft11e-r2hc-odd.c.)
cannam@95 40 */
cannam@95 41
cannam@95 42 #include "reodft.h"
cannam@95 43
cannam@95 44 typedef struct {
cannam@95 45 solver super;
cannam@95 46 } S;
cannam@95 47
cannam@95 48 typedef struct {
cannam@95 49 plan_rdft super;
cannam@95 50 plan *cld;
cannam@95 51 twid *td, *td2;
cannam@95 52 INT is, os;
cannam@95 53 INT n;
cannam@95 54 INT vl;
cannam@95 55 INT ivs, ovs;
cannam@95 56 rdft_kind kind;
cannam@95 57 } P;
cannam@95 58
cannam@95 59 static void apply_re11(const plan *ego_, R *I, R *O)
cannam@95 60 {
cannam@95 61 const P *ego = (const P *) ego_;
cannam@95 62 INT is = ego->is, os = ego->os;
cannam@95 63 INT i, n = ego->n, n2 = n/2;
cannam@95 64 INT iv, vl = ego->vl;
cannam@95 65 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@95 66 R *W = ego->td->W;
cannam@95 67 R *W2;
cannam@95 68 R *buf;
cannam@95 69
cannam@95 70 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@95 71
cannam@95 72 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@95 73 buf[0] = K(2.0) * I[0];
cannam@95 74 buf[n2] = K(2.0) * I[is * (n - 1)];
cannam@95 75 for (i = 1; i + i < n2; ++i) {
cannam@95 76 INT k = i + i;
cannam@95 77 E a, b, a2, b2;
cannam@95 78 {
cannam@95 79 E u, v;
cannam@95 80 u = I[is * (k - 1)];
cannam@95 81 v = I[is * k];
cannam@95 82 a = u + v;
cannam@95 83 b2 = u - v;
cannam@95 84 }
cannam@95 85 {
cannam@95 86 E u, v;
cannam@95 87 u = I[is * (n - k - 1)];
cannam@95 88 v = I[is * (n - k)];
cannam@95 89 b = u + v;
cannam@95 90 a2 = u - v;
cannam@95 91 }
cannam@95 92 {
cannam@95 93 E wa, wb;
cannam@95 94 wa = W[2*i];
cannam@95 95 wb = W[2*i + 1];
cannam@95 96 {
cannam@95 97 E apb, amb;
cannam@95 98 apb = a + b;
cannam@95 99 amb = a - b;
cannam@95 100 buf[i] = wa * amb + wb * apb;
cannam@95 101 buf[n2 - i] = wa * apb - wb * amb;
cannam@95 102 }
cannam@95 103 {
cannam@95 104 E apb, amb;
cannam@95 105 apb = a2 + b2;
cannam@95 106 amb = a2 - b2;
cannam@95 107 buf[n2 + i] = wa * amb + wb * apb;
cannam@95 108 buf[n - i] = wa * apb - wb * amb;
cannam@95 109 }
cannam@95 110 }
cannam@95 111 }
cannam@95 112 if (i + i == n2) {
cannam@95 113 E u, v;
cannam@95 114 u = I[is * (n2 - 1)];
cannam@95 115 v = I[is * n2];
cannam@95 116 buf[i] = (u + v) * (W[2*i] * K(2.0));
cannam@95 117 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
cannam@95 118 }
cannam@95 119
cannam@95 120
cannam@95 121 /* child plan: two r2hc's of size n/2 */
cannam@95 122 {
cannam@95 123 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@95 124 cld->apply((plan *) cld, buf, buf);
cannam@95 125 }
cannam@95 126
cannam@95 127 W2 = ego->td2->W;
cannam@95 128 { /* i == 0 case */
cannam@95 129 E wa, wb;
cannam@95 130 E a, b;
cannam@95 131 wa = W2[0]; /* cos */
cannam@95 132 wb = W2[1]; /* sin */
cannam@95 133 a = buf[0];
cannam@95 134 b = buf[n2];
cannam@95 135 O[0] = wa * a + wb * b;
cannam@95 136 O[os * (n - 1)] = wb * a - wa * b;
cannam@95 137 }
cannam@95 138 W2 += 2;
cannam@95 139 for (i = 1; i + i < n2; ++i, W2 += 2) {
cannam@95 140 INT k;
cannam@95 141 E u, v, u2, v2;
cannam@95 142 u = buf[i];
cannam@95 143 v = buf[n2 - i];
cannam@95 144 u2 = buf[n2 + i];
cannam@95 145 v2 = buf[n - i];
cannam@95 146 k = (i + i) - 1;
cannam@95 147 {
cannam@95 148 E wa, wb;
cannam@95 149 E a, b;
cannam@95 150 wa = W2[0]; /* cos */
cannam@95 151 wb = W2[1]; /* sin */
cannam@95 152 a = u - v;
cannam@95 153 b = v2 - u2;
cannam@95 154 O[os * k] = wa * a + wb * b;
cannam@95 155 O[os * (n - 1 - k)] = wb * a - wa * b;
cannam@95 156 }
cannam@95 157 ++k;
cannam@95 158 W2 += 2;
cannam@95 159 {
cannam@95 160 E wa, wb;
cannam@95 161 E a, b;
cannam@95 162 wa = W2[0]; /* cos */
cannam@95 163 wb = W2[1]; /* sin */
cannam@95 164 a = u + v;
cannam@95 165 b = u2 + v2;
cannam@95 166 O[os * k] = wa * a + wb * b;
cannam@95 167 O[os * (n - 1 - k)] = wb * a - wa * b;
cannam@95 168 }
cannam@95 169 }
cannam@95 170 if (i + i == n2) {
cannam@95 171 INT k = (i + i) - 1;
cannam@95 172 E wa, wb;
cannam@95 173 E a, b;
cannam@95 174 wa = W2[0]; /* cos */
cannam@95 175 wb = W2[1]; /* sin */
cannam@95 176 a = buf[i];
cannam@95 177 b = buf[n2 + i];
cannam@95 178 O[os * k] = wa * a - wb * b;
cannam@95 179 O[os * (n - 1 - k)] = wb * a + wa * b;
cannam@95 180 }
cannam@95 181 }
cannam@95 182
cannam@95 183 X(ifree)(buf);
cannam@95 184 }
cannam@95 185
cannam@95 186 #if 0
cannam@95 187
cannam@95 188 /* This version of apply_re11 uses REDFT01 child plans, more similar
cannam@95 189 to the original paper by Z. Wang. We keep it around for reference
cannam@95 190 (it is simpler) and because it may become more efficient if we
cannam@95 191 ever implement REDFT01 codelets. */
cannam@95 192
cannam@95 193 static void apply_re11(const plan *ego_, R *I, R *O)
cannam@95 194 {
cannam@95 195 const P *ego = (const P *) ego_;
cannam@95 196 INT is = ego->is, os = ego->os;
cannam@95 197 INT i, n = ego->n;
cannam@95 198 INT iv, vl = ego->vl;
cannam@95 199 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@95 200 R *W;
cannam@95 201 R *buf;
cannam@95 202
cannam@95 203 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@95 204
cannam@95 205 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@95 206 buf[0] = K(2.0) * I[0];
cannam@95 207 buf[n/2] = K(2.0) * I[is * (n - 1)];
cannam@95 208 for (i = 1; i + i < n; ++i) {
cannam@95 209 INT k = i + i;
cannam@95 210 E a, b;
cannam@95 211 a = I[is * (k - 1)];
cannam@95 212 b = I[is * k];
cannam@95 213 buf[i] = a + b;
cannam@95 214 buf[n - i] = a - b;
cannam@95 215 }
cannam@95 216
cannam@95 217 /* child plan: two redft01's (DCT-III) */
cannam@95 218 {
cannam@95 219 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@95 220 cld->apply((plan *) cld, buf, buf);
cannam@95 221 }
cannam@95 222
cannam@95 223 W = ego->td2->W;
cannam@95 224 for (i = 0; i + 1 < n/2; ++i, W += 2) {
cannam@95 225 {
cannam@95 226 E wa, wb;
cannam@95 227 E a, b;
cannam@95 228 wa = W[0]; /* cos */
cannam@95 229 wb = W[1]; /* sin */
cannam@95 230 a = buf[i];
cannam@95 231 b = buf[n/2 + i];
cannam@95 232 O[os * i] = wa * a + wb * b;
cannam@95 233 O[os * (n - 1 - i)] = wb * a - wa * b;
cannam@95 234 }
cannam@95 235 ++i;
cannam@95 236 W += 2;
cannam@95 237 {
cannam@95 238 E wa, wb;
cannam@95 239 E a, b;
cannam@95 240 wa = W[0]; /* cos */
cannam@95 241 wb = W[1]; /* sin */
cannam@95 242 a = buf[i];
cannam@95 243 b = buf[n/2 + i];
cannam@95 244 O[os * i] = wa * a - wb * b;
cannam@95 245 O[os * (n - 1 - i)] = wb * a + wa * b;
cannam@95 246 }
cannam@95 247 }
cannam@95 248 if (i < n/2) {
cannam@95 249 E wa, wb;
cannam@95 250 E a, b;
cannam@95 251 wa = W[0]; /* cos */
cannam@95 252 wb = W[1]; /* sin */
cannam@95 253 a = buf[i];
cannam@95 254 b = buf[n/2 + i];
cannam@95 255 O[os * i] = wa * a + wb * b;
cannam@95 256 O[os * (n - 1 - i)] = wb * a - wa * b;
cannam@95 257 }
cannam@95 258 }
cannam@95 259
cannam@95 260 X(ifree)(buf);
cannam@95 261 }
cannam@95 262
cannam@95 263 #endif /* 0 */
cannam@95 264
cannam@95 265 /* like for rodft01, rodft11 is obtained from redft11 by
cannam@95 266 reversing the input and flipping the sign of every other output. */
cannam@95 267 static void apply_ro11(const plan *ego_, R *I, R *O)
cannam@95 268 {
cannam@95 269 const P *ego = (const P *) ego_;
cannam@95 270 INT is = ego->is, os = ego->os;
cannam@95 271 INT i, n = ego->n, n2 = n/2;
cannam@95 272 INT iv, vl = ego->vl;
cannam@95 273 INT ivs = ego->ivs, ovs = ego->ovs;
cannam@95 274 R *W = ego->td->W;
cannam@95 275 R *W2;
cannam@95 276 R *buf;
cannam@95 277
cannam@95 278 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@95 279
cannam@95 280 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
cannam@95 281 buf[0] = K(2.0) * I[is * (n - 1)];
cannam@95 282 buf[n2] = K(2.0) * I[0];
cannam@95 283 for (i = 1; i + i < n2; ++i) {
cannam@95 284 INT k = i + i;
cannam@95 285 E a, b, a2, b2;
cannam@95 286 {
cannam@95 287 E u, v;
cannam@95 288 u = I[is * (n - k)];
cannam@95 289 v = I[is * (n - 1 - k)];
cannam@95 290 a = u + v;
cannam@95 291 b2 = u - v;
cannam@95 292 }
cannam@95 293 {
cannam@95 294 E u, v;
cannam@95 295 u = I[is * (k)];
cannam@95 296 v = I[is * (k - 1)];
cannam@95 297 b = u + v;
cannam@95 298 a2 = u - v;
cannam@95 299 }
cannam@95 300 {
cannam@95 301 E wa, wb;
cannam@95 302 wa = W[2*i];
cannam@95 303 wb = W[2*i + 1];
cannam@95 304 {
cannam@95 305 E apb, amb;
cannam@95 306 apb = a + b;
cannam@95 307 amb = a - b;
cannam@95 308 buf[i] = wa * amb + wb * apb;
cannam@95 309 buf[n2 - i] = wa * apb - wb * amb;
cannam@95 310 }
cannam@95 311 {
cannam@95 312 E apb, amb;
cannam@95 313 apb = a2 + b2;
cannam@95 314 amb = a2 - b2;
cannam@95 315 buf[n2 + i] = wa * amb + wb * apb;
cannam@95 316 buf[n - i] = wa * apb - wb * amb;
cannam@95 317 }
cannam@95 318 }
cannam@95 319 }
cannam@95 320 if (i + i == n2) {
cannam@95 321 E u, v;
cannam@95 322 u = I[is * n2];
cannam@95 323 v = I[is * (n2 - 1)];
cannam@95 324 buf[i] = (u + v) * (W[2*i] * K(2.0));
cannam@95 325 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
cannam@95 326 }
cannam@95 327
cannam@95 328
cannam@95 329 /* child plan: two r2hc's of size n/2 */
cannam@95 330 {
cannam@95 331 plan_rdft *cld = (plan_rdft *) ego->cld;
cannam@95 332 cld->apply((plan *) cld, buf, buf);
cannam@95 333 }
cannam@95 334
cannam@95 335 W2 = ego->td2->W;
cannam@95 336 { /* i == 0 case */
cannam@95 337 E wa, wb;
cannam@95 338 E a, b;
cannam@95 339 wa = W2[0]; /* cos */
cannam@95 340 wb = W2[1]; /* sin */
cannam@95 341 a = buf[0];
cannam@95 342 b = buf[n2];
cannam@95 343 O[0] = wa * a + wb * b;
cannam@95 344 O[os * (n - 1)] = wa * b - wb * a;
cannam@95 345 }
cannam@95 346 W2 += 2;
cannam@95 347 for (i = 1; i + i < n2; ++i, W2 += 2) {
cannam@95 348 INT k;
cannam@95 349 E u, v, u2, v2;
cannam@95 350 u = buf[i];
cannam@95 351 v = buf[n2 - i];
cannam@95 352 u2 = buf[n2 + i];
cannam@95 353 v2 = buf[n - i];
cannam@95 354 k = (i + i) - 1;
cannam@95 355 {
cannam@95 356 E wa, wb;
cannam@95 357 E a, b;
cannam@95 358 wa = W2[0]; /* cos */
cannam@95 359 wb = W2[1]; /* sin */
cannam@95 360 a = v - u;
cannam@95 361 b = u2 - v2;
cannam@95 362 O[os * k] = wa * a + wb * b;
cannam@95 363 O[os * (n - 1 - k)] = wa * b - wb * a;
cannam@95 364 }
cannam@95 365 ++k;
cannam@95 366 W2 += 2;
cannam@95 367 {
cannam@95 368 E wa, wb;
cannam@95 369 E a, b;
cannam@95 370 wa = W2[0]; /* cos */
cannam@95 371 wb = W2[1]; /* sin */
cannam@95 372 a = u + v;
cannam@95 373 b = u2 + v2;
cannam@95 374 O[os * k] = wa * a + wb * b;
cannam@95 375 O[os * (n - 1 - k)] = wa * b - wb * a;
cannam@95 376 }
cannam@95 377 }
cannam@95 378 if (i + i == n2) {
cannam@95 379 INT k = (i + i) - 1;
cannam@95 380 E wa, wb;
cannam@95 381 E a, b;
cannam@95 382 wa = W2[0]; /* cos */
cannam@95 383 wb = W2[1]; /* sin */
cannam@95 384 a = buf[i];
cannam@95 385 b = buf[n2 + i];
cannam@95 386 O[os * k] = wb * b - wa * a;
cannam@95 387 O[os * (n - 1 - k)] = wa * b + wb * a;
cannam@95 388 }
cannam@95 389 }
cannam@95 390
cannam@95 391 X(ifree)(buf);
cannam@95 392 }
cannam@95 393
cannam@95 394 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@95 395 {
cannam@95 396 P *ego = (P *) ego_;
cannam@95 397 static const tw_instr reodft010e_tw[] = {
cannam@95 398 { TW_COS, 0, 1 },
cannam@95 399 { TW_SIN, 0, 1 },
cannam@95 400 { TW_NEXT, 1, 0 }
cannam@95 401 };
cannam@95 402 static const tw_instr reodft11e_tw[] = {
cannam@95 403 { TW_COS, 1, 1 },
cannam@95 404 { TW_SIN, 1, 1 },
cannam@95 405 { TW_NEXT, 2, 0 }
cannam@95 406 };
cannam@95 407
cannam@95 408 X(plan_awake)(ego->cld, wakefulness);
cannam@95 409
cannam@95 410 X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw,
cannam@95 411 2*ego->n, 1, ego->n/4+1);
cannam@95 412 X(twiddle_awake)(wakefulness, &ego->td2, reodft11e_tw,
cannam@95 413 8*ego->n, 1, ego->n);
cannam@95 414 }
cannam@95 415
cannam@95 416 static void destroy(plan *ego_)
cannam@95 417 {
cannam@95 418 P *ego = (P *) ego_;
cannam@95 419 X(plan_destroy_internal)(ego->cld);
cannam@95 420 }
cannam@95 421
cannam@95 422 static void print(const plan *ego_, printer *p)
cannam@95 423 {
cannam@95 424 const P *ego = (const P *) ego_;
cannam@95 425 p->print(p, "(%se-radix2-r2hc-%D%v%(%p%))",
cannam@95 426 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
cannam@95 427 }
cannam@95 428
cannam@95 429 static int applicable0(const solver *ego_, const problem *p_)
cannam@95 430 {
cannam@95 431 const problem_rdft *p = (const problem_rdft *) p_;
cannam@95 432 UNUSED(ego_);
cannam@95 433
cannam@95 434 return (1
cannam@95 435 && p->sz->rnk == 1
cannam@95 436 && p->vecsz->rnk <= 1
cannam@95 437 && p->sz->dims[0].n % 2 == 0
cannam@95 438 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
cannam@95 439 );
cannam@95 440 }
cannam@95 441
cannam@95 442 static int applicable(const solver *ego, const problem *p, const planner *plnr)
cannam@95 443 {
cannam@95 444 return (!NO_SLOWP(plnr) && applicable0(ego, p));
cannam@95 445 }
cannam@95 446
cannam@95 447 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 448 {
cannam@95 449 P *pln;
cannam@95 450 const problem_rdft *p;
cannam@95 451 plan *cld;
cannam@95 452 R *buf;
cannam@95 453 INT n;
cannam@95 454 opcnt ops;
cannam@95 455
cannam@95 456 static const plan_adt padt = {
cannam@95 457 X(rdft_solve), awake, print, destroy
cannam@95 458 };
cannam@95 459
cannam@95 460 if (!applicable(ego_, p_, plnr))
cannam@95 461 return (plan *)0;
cannam@95 462
cannam@95 463 p = (const problem_rdft *) p_;
cannam@95 464
cannam@95 465 n = p->sz->dims[0].n;
cannam@95 466 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
cannam@95 467
cannam@95 468 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1),
cannam@95 469 X(mktensor_1d)(2, n/2, n/2),
cannam@95 470 buf, buf, R2HC));
cannam@95 471 X(ifree)(buf);
cannam@95 472 if (!cld)
cannam@95 473 return (plan *)0;
cannam@95 474
cannam@95 475 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
cannam@95 476 pln->n = n;
cannam@95 477 pln->is = p->sz->dims[0].is;
cannam@95 478 pln->os = p->sz->dims[0].os;
cannam@95 479 pln->cld = cld;
cannam@95 480 pln->td = pln->td2 = 0;
cannam@95 481 pln->kind = p->kind[0];
cannam@95 482
cannam@95 483 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@95 484
cannam@95 485 X(ops_zero)(&ops);
cannam@95 486 ops.add = 2 + (n/2 - 1)/2 * 20;
cannam@95 487 ops.mul = 6 + (n/2 - 1)/2 * 16;
cannam@95 488 ops.other = 4*n + 2 + (n/2 - 1)/2 * 6;
cannam@95 489 if ((n/2) % 2 == 0) {
cannam@95 490 ops.add += 4;
cannam@95 491 ops.mul += 8;
cannam@95 492 ops.other += 4;
cannam@95 493 }
cannam@95 494
cannam@95 495 X(ops_zero)(&pln->super.super.ops);
cannam@95 496 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
cannam@95 497 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
cannam@95 498
cannam@95 499 return &(pln->super.super);
cannam@95 500 }
cannam@95 501
cannam@95 502 /* constructor */
cannam@95 503 static solver *mksolver(void)
cannam@95 504 {
cannam@95 505 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@95 506 S *slv = MKSOLVER(S, &sadt);
cannam@95 507 return &(slv->super);
cannam@95 508 }
cannam@95 509
cannam@95 510 void X(reodft11e_radix2_r2hc_register)(planner *p)
cannam@95 511 {
cannam@95 512 REGISTER_SOLVER(p, mksolver());
cannam@95 513 }