annotate src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_8.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-rdft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 41 FP additions, 40 FP multiplications,
cannam@95 32 * (or, 23 additions, 22 multiplications, 18 fused multiply/add),
cannam@95 33 * 52 stack variables, 2 constants, and 16 memory accesses
cannam@95 34 */
cannam@95 35 #include "hc2cfv.h"
cannam@95 36
cannam@95 37 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 41 {
cannam@95 42 INT m;
cannam@95 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@95 44 V T3, Tc, Tl, Ts, Tf, Tg, Te, Tp, T7, Ta, T1, T2, Tb, Tj, Tk;
cannam@95 45 V Ti, Tr, T5, T6, T4, T9, Th, Tq, TC, T8, Td, TF, Tm, TG, TD;
cannam@95 46 V Tt, Tu, Tn, TH, TL, TE, TK, Tz, Tv, Ty, To, TJ, TI, TN, TM;
cannam@95 47 V TB, TA, Tx, Tw;
cannam@95 48 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@95 49 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@95 50 Tb = LDW(&(W[0]));
cannam@95 51 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 52 Tk = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 53 Ti = LDW(&(W[TWVL * 12]));
cannam@95 54 Tr = LDW(&(W[TWVL * 10]));
cannam@95 55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@95 56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@95 57 T3 = VFMACONJ(T2, T1);
cannam@95 58 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
cannam@95 59 T4 = LDW(&(W[TWVL * 6]));
cannam@95 60 T9 = LDW(&(W[TWVL * 8]));
cannam@95 61 Tl = VZMULIJ(Ti, VFNMSCONJ(Tk, Tj));
cannam@95 62 Ts = VZMULJ(Tr, VFMACONJ(Tk, Tj));
cannam@95 63 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 64 Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 65 Te = LDW(&(W[TWVL * 4]));
cannam@95 66 Tp = LDW(&(W[TWVL * 2]));
cannam@95 67 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
cannam@95 68 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
cannam@95 69 Th = VZMULIJ(Te, VFNMSCONJ(Tg, Tf));
cannam@95 70 Tq = VZMULJ(Tp, VFMACONJ(Tg, Tf));
cannam@95 71 TC = VADD(T3, T7);
cannam@95 72 T8 = VSUB(T3, T7);
cannam@95 73 Td = VSUB(Ta, Tc);
cannam@95 74 TF = VADD(Tc, Ta);
cannam@95 75 Tm = VSUB(Th, Tl);
cannam@95 76 TG = VADD(Th, Tl);
cannam@95 77 TD = VADD(Tq, Ts);
cannam@95 78 Tt = VSUB(Tq, Ts);
cannam@95 79 Tu = VSUB(Tm, Td);
cannam@95 80 Tn = VADD(Td, Tm);
cannam@95 81 TH = VSUB(TF, TG);
cannam@95 82 TL = VADD(TF, TG);
cannam@95 83 TE = VSUB(TC, TD);
cannam@95 84 TK = VADD(TC, TD);
cannam@95 85 Tz = VFMA(LDK(KP707106781), Tu, Tt);
cannam@95 86 Tv = VFNMS(LDK(KP707106781), Tu, Tt);
cannam@95 87 Ty = VFNMS(LDK(KP707106781), Tn, T8);
cannam@95 88 To = VFMA(LDK(KP707106781), Tn, T8);
cannam@95 89 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TH, TE)));
cannam@95 90 TI = VMUL(LDK(KP500000000), VFMAI(TH, TE));
cannam@95 91 TN = VCONJ(VMUL(LDK(KP500000000), VADD(TL, TK)));
cannam@95 92 TM = VMUL(LDK(KP500000000), VSUB(TK, TL));
cannam@95 93 TB = VMUL(LDK(KP500000000), VFMAI(Tz, Ty));
cannam@95 94 TA = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tz, Ty)));
cannam@95 95 Tx = VCONJ(VMUL(LDK(KP500000000), VFMAI(Tv, To)));
cannam@95 96 Tw = VMUL(LDK(KP500000000), VFNMSI(Tv, To));
cannam@95 97 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
cannam@95 98 ST(&(Rp[WS(rs, 2)]), TI, ms, &(Rp[0]));
cannam@95 99 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
cannam@95 100 ST(&(Rp[0]), TM, ms, &(Rp[0]));
cannam@95 101 ST(&(Rp[WS(rs, 3)]), TB, ms, &(Rp[WS(rs, 1)]));
cannam@95 102 ST(&(Rm[WS(rs, 2)]), TA, -ms, &(Rm[0]));
cannam@95 103 ST(&(Rm[0]), Tx, -ms, &(Rm[0]));
cannam@95 104 ST(&(Rp[WS(rs, 1)]), Tw, ms, &(Rp[WS(rs, 1)]));
cannam@95 105 }
cannam@95 106 }
cannam@95 107 VLEAVE();
cannam@95 108 }
cannam@95 109
cannam@95 110 static const tw_instr twinstr[] = {
cannam@95 111 VTW(1, 1),
cannam@95 112 VTW(1, 2),
cannam@95 113 VTW(1, 3),
cannam@95 114 VTW(1, 4),
cannam@95 115 VTW(1, 5),
cannam@95 116 VTW(1, 6),
cannam@95 117 VTW(1, 7),
cannam@95 118 {TW_NEXT, VL, 0}
cannam@95 119 };
cannam@95 120
cannam@95 121 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {23, 22, 18, 0} };
cannam@95 122
cannam@95 123 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
cannam@95 124 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
cannam@95 125 }
cannam@95 126 #else /* HAVE_FMA */
cannam@95 127
cannam@95 128 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
cannam@95 129
cannam@95 130 /*
cannam@95 131 * This function contains 41 FP additions, 23 FP multiplications,
cannam@95 132 * (or, 41 additions, 23 multiplications, 0 fused multiply/add),
cannam@95 133 * 57 stack variables, 3 constants, and 16 memory accesses
cannam@95 134 */
cannam@95 135 #include "hc2cfv.h"
cannam@95 136
cannam@95 137 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 138 {
cannam@95 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 140 DVK(KP353553390, +0.353553390593273762200422181052424519642417969);
cannam@95 141 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 142 {
cannam@95 143 INT m;
cannam@95 144 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
cannam@95 145 V Ta, TE, Tr, TF, Tl, TK, Tw, TG, T1, T6, T3, T8, T2, T7, T4;
cannam@95 146 V T9, T5, To, Tq, Tn, Tp, Tc, Th, Te, Tj, Td, Ti, Tf, Tk, Tb;
cannam@95 147 V Tg, Tt, Tv, Ts, Tu, Ty, Tz, Tm, Tx, TC, TD, TA, TB, TI, TO;
cannam@95 148 V TL, TP, TH, TJ, TM, TR, TN, TQ;
cannam@95 149 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@95 150 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@95 151 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@95 152 T3 = VCONJ(T2);
cannam@95 153 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@95 154 T8 = VCONJ(T7);
cannam@95 155 T4 = VADD(T1, T3);
cannam@95 156 T5 = LDW(&(W[TWVL * 6]));
cannam@95 157 T9 = VZMULJ(T5, VADD(T6, T8));
cannam@95 158 Ta = VADD(T4, T9);
cannam@95 159 TE = VMUL(LDK(KP500000000), VSUB(T4, T9));
cannam@95 160 Tn = LDW(&(W[0]));
cannam@95 161 To = VZMULIJ(Tn, VSUB(T3, T1));
cannam@95 162 Tp = LDW(&(W[TWVL * 8]));
cannam@95 163 Tq = VZMULIJ(Tp, VSUB(T8, T6));
cannam@95 164 Tr = VADD(To, Tq);
cannam@95 165 TF = VSUB(To, Tq);
cannam@95 166 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 167 Th = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 168 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 169 Te = VCONJ(Td);
cannam@95 170 Ti = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 171 Tj = VCONJ(Ti);
cannam@95 172 Tb = LDW(&(W[TWVL * 2]));
cannam@95 173 Tf = VZMULJ(Tb, VADD(Tc, Te));
cannam@95 174 Tg = LDW(&(W[TWVL * 10]));
cannam@95 175 Tk = VZMULJ(Tg, VADD(Th, Tj));
cannam@95 176 Tl = VADD(Tf, Tk);
cannam@95 177 TK = VSUB(Tf, Tk);
cannam@95 178 Ts = LDW(&(W[TWVL * 4]));
cannam@95 179 Tt = VZMULIJ(Ts, VSUB(Te, Tc));
cannam@95 180 Tu = LDW(&(W[TWVL * 12]));
cannam@95 181 Tv = VZMULIJ(Tu, VSUB(Tj, Th));
cannam@95 182 Tw = VADD(Tt, Tv);
cannam@95 183 TG = VSUB(Tv, Tt);
cannam@95 184 Tm = VADD(Ta, Tl);
cannam@95 185 Tx = VADD(Tr, Tw);
cannam@95 186 Ty = VCONJ(VMUL(LDK(KP500000000), VSUB(Tm, Tx)));
cannam@95 187 Tz = VMUL(LDK(KP500000000), VADD(Tm, Tx));
cannam@95 188 ST(&(Rm[WS(rs, 3)]), Ty, -ms, &(Rm[WS(rs, 1)]));
cannam@95 189 ST(&(Rp[0]), Tz, ms, &(Rp[0]));
cannam@95 190 TA = VSUB(Ta, Tl);
cannam@95 191 TB = VBYI(VSUB(Tw, Tr));
cannam@95 192 TC = VCONJ(VMUL(LDK(KP500000000), VSUB(TA, TB)));
cannam@95 193 TD = VMUL(LDK(KP500000000), VADD(TA, TB));
cannam@95 194 ST(&(Rm[WS(rs, 1)]), TC, -ms, &(Rm[WS(rs, 1)]));
cannam@95 195 ST(&(Rp[WS(rs, 2)]), TD, ms, &(Rp[0]));
cannam@95 196 TH = VMUL(LDK(KP353553390), VADD(TF, TG));
cannam@95 197 TI = VADD(TE, TH);
cannam@95 198 TO = VSUB(TE, TH);
cannam@95 199 TJ = VMUL(LDK(KP707106781), VSUB(TG, TF));
cannam@95 200 TL = VMUL(LDK(KP500000000), VBYI(VSUB(TJ, TK)));
cannam@95 201 TP = VMUL(LDK(KP500000000), VBYI(VADD(TK, TJ)));
cannam@95 202 TM = VCONJ(VSUB(TI, TL));
cannam@95 203 ST(&(Rm[0]), TM, -ms, &(Rm[0]));
cannam@95 204 TR = VADD(TO, TP);
cannam@95 205 ST(&(Rp[WS(rs, 3)]), TR, ms, &(Rp[WS(rs, 1)]));
cannam@95 206 TN = VADD(TI, TL);
cannam@95 207 ST(&(Rp[WS(rs, 1)]), TN, ms, &(Rp[WS(rs, 1)]));
cannam@95 208 TQ = VCONJ(VSUB(TO, TP));
cannam@95 209 ST(&(Rm[WS(rs, 2)]), TQ, -ms, &(Rm[0]));
cannam@95 210 }
cannam@95 211 }
cannam@95 212 VLEAVE();
cannam@95 213 }
cannam@95 214
cannam@95 215 static const tw_instr twinstr[] = {
cannam@95 216 VTW(1, 1),
cannam@95 217 VTW(1, 2),
cannam@95 218 VTW(1, 3),
cannam@95 219 VTW(1, 4),
cannam@95 220 VTW(1, 5),
cannam@95 221 VTW(1, 6),
cannam@95 222 VTW(1, 7),
cannam@95 223 {TW_NEXT, VL, 0}
cannam@95 224 };
cannam@95 225
cannam@95 226 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {41, 23, 0, 0} };
cannam@95 227
cannam@95 228 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
cannam@95 229 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
cannam@95 230 }
cannam@95 231 #endif /* HAVE_FMA */