annotate src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_4.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-rdft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 15 FP additions, 16 FP multiplications,
cannam@95 32 * (or, 9 additions, 10 multiplications, 6 fused multiply/add),
cannam@95 33 * 21 stack variables, 1 constants, and 8 memory accesses
cannam@95 34 */
cannam@95 35 #include "hc2cfv.h"
cannam@95 36
cannam@95 37 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 40 {
cannam@95 41 INT m;
cannam@95 42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@95 43 V T1, T2, Tb, T5, T6, T4, T9, T3, Tc, T7, Ta, Tg, T8, Td, Th;
cannam@95 44 V Tf, Te, Ti, Tj;
cannam@95 45 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@95 46 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@95 47 Tb = LDW(&(W[0]));
cannam@95 48 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 49 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 50 T4 = LDW(&(W[TWVL * 2]));
cannam@95 51 T9 = LDW(&(W[TWVL * 4]));
cannam@95 52 T3 = VFMACONJ(T2, T1);
cannam@95 53 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
cannam@95 54 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
cannam@95 55 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
cannam@95 56 Tg = VADD(T3, T7);
cannam@95 57 T8 = VSUB(T3, T7);
cannam@95 58 Td = VSUB(Ta, Tc);
cannam@95 59 Th = VADD(Tc, Ta);
cannam@95 60 Tf = VCONJ(VMUL(LDK(KP500000000), VFMAI(Td, T8)));
cannam@95 61 Te = VMUL(LDK(KP500000000), VFNMSI(Td, T8));
cannam@95 62 Ti = VMUL(LDK(KP500000000), VSUB(Tg, Th));
cannam@95 63 Tj = VCONJ(VMUL(LDK(KP500000000), VADD(Th, Tg)));
cannam@95 64 ST(&(Rm[0]), Tf, -ms, &(Rm[0]));
cannam@95 65 ST(&(Rp[WS(rs, 1)]), Te, ms, &(Rp[WS(rs, 1)]));
cannam@95 66 ST(&(Rp[0]), Ti, ms, &(Rp[0]));
cannam@95 67 ST(&(Rm[WS(rs, 1)]), Tj, -ms, &(Rm[WS(rs, 1)]));
cannam@95 68 }
cannam@95 69 }
cannam@95 70 VLEAVE();
cannam@95 71 }
cannam@95 72
cannam@95 73 static const tw_instr twinstr[] = {
cannam@95 74 VTW(1, 1),
cannam@95 75 VTW(1, 2),
cannam@95 76 VTW(1, 3),
cannam@95 77 {TW_NEXT, VL, 0}
cannam@95 78 };
cannam@95 79
cannam@95 80 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {9, 10, 6, 0} };
cannam@95 81
cannam@95 82 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
cannam@95 83 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
cannam@95 84 }
cannam@95 85 #else /* HAVE_FMA */
cannam@95 86
cannam@95 87 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */
cannam@95 88
cannam@95 89 /*
cannam@95 90 * This function contains 15 FP additions, 10 FP multiplications,
cannam@95 91 * (or, 15 additions, 10 multiplications, 0 fused multiply/add),
cannam@95 92 * 23 stack variables, 1 constants, and 8 memory accesses
cannam@95 93 */
cannam@95 94 #include "hc2cfv.h"
cannam@95 95
cannam@95 96 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 97 {
cannam@95 98 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 99 {
cannam@95 100 INT m;
cannam@95 101 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@95 102 V T4, Tc, T9, Te, T1, T3, T2, Tb, T6, T8, T7, T5, Td, Tg, Th;
cannam@95 103 V Ta, Tf, Tk, Tl, Ti, Tj;
cannam@95 104 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@95 105 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@95 106 T3 = VCONJ(T2);
cannam@95 107 T4 = VADD(T1, T3);
cannam@95 108 Tb = LDW(&(W[0]));
cannam@95 109 Tc = VZMULIJ(Tb, VSUB(T3, T1));
cannam@95 110 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 111 T7 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 112 T8 = VCONJ(T7);
cannam@95 113 T5 = LDW(&(W[TWVL * 2]));
cannam@95 114 T9 = VZMULJ(T5, VADD(T6, T8));
cannam@95 115 Td = LDW(&(W[TWVL * 4]));
cannam@95 116 Te = VZMULIJ(Td, VSUB(T8, T6));
cannam@95 117 Ta = VSUB(T4, T9);
cannam@95 118 Tf = VBYI(VSUB(Tc, Te));
cannam@95 119 Tg = VMUL(LDK(KP500000000), VSUB(Ta, Tf));
cannam@95 120 Th = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, Tf)));
cannam@95 121 ST(&(Rp[WS(rs, 1)]), Tg, ms, &(Rp[WS(rs, 1)]));
cannam@95 122 ST(&(Rm[0]), Th, -ms, &(Rm[0]));
cannam@95 123 Ti = VADD(T4, T9);
cannam@95 124 Tj = VADD(Tc, Te);
cannam@95 125 Tk = VCONJ(VMUL(LDK(KP500000000), VSUB(Ti, Tj)));
cannam@95 126 Tl = VMUL(LDK(KP500000000), VADD(Ti, Tj));
cannam@95 127 ST(&(Rm[WS(rs, 1)]), Tk, -ms, &(Rm[WS(rs, 1)]));
cannam@95 128 ST(&(Rp[0]), Tl, ms, &(Rp[0]));
cannam@95 129 }
cannam@95 130 }
cannam@95 131 VLEAVE();
cannam@95 132 }
cannam@95 133
cannam@95 134 static const tw_instr twinstr[] = {
cannam@95 135 VTW(1, 1),
cannam@95 136 VTW(1, 2),
cannam@95 137 VTW(1, 3),
cannam@95 138 {TW_NEXT, VL, 0}
cannam@95 139 };
cannam@95 140
cannam@95 141 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {15, 10, 0, 0} };
cannam@95 142
cannam@95 143 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
cannam@95 144 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
cannam@95 145 }
cannam@95 146 #endif /* HAVE_FMA */