annotate src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_10.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-rdft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 61 FP additions, 60 FP multiplications,
cannam@95 32 * (or, 33 additions, 32 multiplications, 28 fused multiply/add),
cannam@95 33 * 77 stack variables, 5 constants, and 20 memory accesses
cannam@95 34 */
cannam@95 35 #include "hc2cfv.h"
cannam@95 36
cannam@95 37 static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@95 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 41 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@95 42 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@95 43 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@95 44 {
cannam@95 45 INT m;
cannam@95 46 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
cannam@95 47 V T5, T6, Tw, Tr, Tc, Tj, Tl, Tm, Tk, Ts, Tg, Ty, T3, T4, T1;
cannam@95 48 V T2, Tv, Tq, Ta, Tb, T9, Ti, Te, Tf, Td, Tx, Tn, Tt, Th, TQ;
cannam@95 49 V TT, Tz, T7, TR, To, Tu, TU;
cannam@95 50 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@95 51 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@95 52 Tv = LDW(&(W[0]));
cannam@95 53 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@95 54 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@95 55 Tq = LDW(&(W[TWVL * 6]));
cannam@95 56 Ta = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 57 Tb = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 58 T9 = LDW(&(W[TWVL * 2]));
cannam@95 59 Ti = LDW(&(W[TWVL * 4]));
cannam@95 60 Tw = VZMULIJ(Tv, VFNMSCONJ(T2, T1));
cannam@95 61 Te = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 62 Tf = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 63 Tr = VZMULJ(Tq, VFMACONJ(T6, T5));
cannam@95 64 Td = LDW(&(W[TWVL * 12]));
cannam@95 65 Tx = LDW(&(W[TWVL * 10]));
cannam@95 66 Tc = VZMULJ(T9, VFMACONJ(Tb, Ta));
cannam@95 67 Tj = VZMULIJ(Ti, VFNMSCONJ(Tb, Ta));
cannam@95 68 Tl = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@95 69 Tm = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@95 70 Tk = LDW(&(W[TWVL * 14]));
cannam@95 71 Ts = LDW(&(W[TWVL * 16]));
cannam@95 72 Tg = VZMULIJ(Td, VFNMSCONJ(Tf, Te));
cannam@95 73 Ty = VZMULJ(Tx, VFMACONJ(Tf, Te));
cannam@95 74 T3 = VFMACONJ(T2, T1);
cannam@95 75 T4 = LDW(&(W[TWVL * 8]));
cannam@95 76 Tn = VZMULJ(Tk, VFMACONJ(Tm, Tl));
cannam@95 77 Tt = VZMULIJ(Ts, VFNMSCONJ(Tm, Tl));
cannam@95 78 Th = VSUB(Tc, Tg);
cannam@95 79 TQ = VADD(Tc, Tg);
cannam@95 80 TT = VADD(Tw, Ty);
cannam@95 81 Tz = VSUB(Tw, Ty);
cannam@95 82 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
cannam@95 83 TR = VADD(Tj, Tn);
cannam@95 84 To = VSUB(Tj, Tn);
cannam@95 85 Tu = VSUB(Tr, Tt);
cannam@95 86 TU = VADD(Tr, Tt);
cannam@95 87 {
cannam@95 88 V TP, T8, TS, T11, Tp, TH, TA, TG, TV, T12, TE, TB, TM, TI, TZ;
cannam@95 89 V TW, T17, T13, TD, TC, TY, TX, TL, TF, T10, T16, TN, TO, TK, TJ;
cannam@95 90 V T18, T19, T15, T14;
cannam@95 91 TP = VADD(T3, T7);
cannam@95 92 T8 = VSUB(T3, T7);
cannam@95 93 TS = VADD(TQ, TR);
cannam@95 94 T11 = VSUB(TQ, TR);
cannam@95 95 Tp = VSUB(Th, To);
cannam@95 96 TH = VADD(Th, To);
cannam@95 97 TA = VSUB(Tu, Tz);
cannam@95 98 TG = VADD(Tz, Tu);
cannam@95 99 TV = VADD(TT, TU);
cannam@95 100 T12 = VSUB(TU, TT);
cannam@95 101 TE = VSUB(Tp, TA);
cannam@95 102 TB = VADD(Tp, TA);
cannam@95 103 TM = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TG, TH));
cannam@95 104 TI = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TH, TG));
cannam@95 105 TZ = VSUB(TS, TV);
cannam@95 106 TW = VADD(TS, TV);
cannam@95 107 T17 = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T11, T12));
cannam@95 108 T13 = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T12, T11));
cannam@95 109 TD = VFNMS(LDK(KP250000000), TB, T8);
cannam@95 110 TC = VMUL(LDK(KP500000000), VADD(T8, TB));
cannam@95 111 TY = VFNMS(LDK(KP250000000), TW, TP);
cannam@95 112 TX = VCONJ(VMUL(LDK(KP500000000), VADD(TP, TW)));
cannam@95 113 TL = VFMA(LDK(KP559016994), TE, TD);
cannam@95 114 TF = VFNMS(LDK(KP559016994), TE, TD);
cannam@95 115 ST(&(Rp[0]), TC, ms, &(Rp[0]));
cannam@95 116 T10 = VFMA(LDK(KP559016994), TZ, TY);
cannam@95 117 T16 = VFNMS(LDK(KP559016994), TZ, TY);
cannam@95 118 ST(&(Rm[WS(rs, 4)]), TX, -ms, &(Rm[0]));
cannam@95 119 TN = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TM, TL)));
cannam@95 120 TO = VMUL(LDK(KP500000000), VFMAI(TM, TL));
cannam@95 121 TK = VMUL(LDK(KP500000000), VFMAI(TI, TF));
cannam@95 122 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TI, TF)));
cannam@95 123 T18 = VMUL(LDK(KP500000000), VFNMSI(T17, T16));
cannam@95 124 T19 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T17, T16)));
cannam@95 125 T15 = VCONJ(VMUL(LDK(KP500000000), VFMAI(T13, T10)));
cannam@95 126 T14 = VMUL(LDK(KP500000000), VFNMSI(T13, T10));
cannam@95 127 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
cannam@95 128 ST(&(Rp[WS(rs, 4)]), TO, ms, &(Rp[0]));
cannam@95 129 ST(&(Rp[WS(rs, 2)]), TK, ms, &(Rp[0]));
cannam@95 130 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
cannam@95 131 ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
cannam@95 132 ST(&(Rm[WS(rs, 2)]), T19, -ms, &(Rm[0]));
cannam@95 133 ST(&(Rm[0]), T15, -ms, &(Rm[0]));
cannam@95 134 ST(&(Rp[WS(rs, 1)]), T14, ms, &(Rp[WS(rs, 1)]));
cannam@95 135 }
cannam@95 136 }
cannam@95 137 }
cannam@95 138 VLEAVE();
cannam@95 139 }
cannam@95 140
cannam@95 141 static const tw_instr twinstr[] = {
cannam@95 142 VTW(1, 1),
cannam@95 143 VTW(1, 2),
cannam@95 144 VTW(1, 3),
cannam@95 145 VTW(1, 4),
cannam@95 146 VTW(1, 5),
cannam@95 147 VTW(1, 6),
cannam@95 148 VTW(1, 7),
cannam@95 149 VTW(1, 8),
cannam@95 150 VTW(1, 9),
cannam@95 151 {TW_NEXT, VL, 0}
cannam@95 152 };
cannam@95 153
cannam@95 154 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {33, 32, 28, 0} };
cannam@95 155
cannam@95 156 void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
cannam@95 157 X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
cannam@95 158 }
cannam@95 159 #else /* HAVE_FMA */
cannam@95 160
cannam@95 161 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dit -name hc2cfdftv_10 -include hc2cfv.h */
cannam@95 162
cannam@95 163 /*
cannam@95 164 * This function contains 61 FP additions, 38 FP multiplications,
cannam@95 165 * (or, 55 additions, 32 multiplications, 6 fused multiply/add),
cannam@95 166 * 82 stack variables, 5 constants, and 20 memory accesses
cannam@95 167 */
cannam@95 168 #include "hc2cfv.h"
cannam@95 169
cannam@95 170 static void hc2cfdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 171 {
cannam@95 172 DVK(KP125000000, +0.125000000000000000000000000000000000000000000);
cannam@95 173 DVK(KP279508497, +0.279508497187473712051146708591409529430077295);
cannam@95 174 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@95 175 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@95 176 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 177 {
cannam@95 178 INT m;
cannam@95 179 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
cannam@95 180 V Tl, Tt, Tu, TY, TZ, T10, Tz, TE, TF, TV, TW, TX, Ta, TU, TN;
cannam@95 181 V TR, TH, TQ, TK, TL, TM, TI, TG, TJ, TT, TO, TP, TS, T18, T1c;
cannam@95 182 V T12, T1b, T15, T16, T17, T14, T11, T13, T1e, T19, T1a, T1d;
cannam@95 183 {
cannam@95 184 V T1, T3, Ty, T8, T7, TB, Tf, Ts, Tk, Tw, Tq, TD, T2, Tx, T6;
cannam@95 185 V TA, Tc, Te, Td, Tb, Tr, Tj, Ti, Th, Tg, Tv, Tn, Tp, To, Tm;
cannam@95 186 V TC, T4, T9, T5;
cannam@95 187 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@95 188 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@95 189 T3 = VCONJ(T2);
cannam@95 190 Tx = LDW(&(W[0]));
cannam@95 191 Ty = VZMULIJ(Tx, VSUB(T3, T1));
cannam@95 192 T8 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@95 193 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@95 194 T7 = VCONJ(T6);
cannam@95 195 TA = LDW(&(W[TWVL * 6]));
cannam@95 196 TB = VZMULJ(TA, VADD(T7, T8));
cannam@95 197 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 198 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 199 Te = VCONJ(Td);
cannam@95 200 Tb = LDW(&(W[TWVL * 2]));
cannam@95 201 Tf = VZMULJ(Tb, VADD(Tc, Te));
cannam@95 202 Tr = LDW(&(W[TWVL * 4]));
cannam@95 203 Ts = VZMULIJ(Tr, VSUB(Te, Tc));
cannam@95 204 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 205 Th = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 206 Ti = VCONJ(Th);
cannam@95 207 Tg = LDW(&(W[TWVL * 12]));
cannam@95 208 Tk = VZMULIJ(Tg, VSUB(Ti, Tj));
cannam@95 209 Tv = LDW(&(W[TWVL * 10]));
cannam@95 210 Tw = VZMULJ(Tv, VADD(Ti, Tj));
cannam@95 211 Tn = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
cannam@95 212 To = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
cannam@95 213 Tp = VCONJ(To);
cannam@95 214 Tm = LDW(&(W[TWVL * 14]));
cannam@95 215 Tq = VZMULJ(Tm, VADD(Tn, Tp));
cannam@95 216 TC = LDW(&(W[TWVL * 16]));
cannam@95 217 TD = VZMULIJ(TC, VSUB(Tp, Tn));
cannam@95 218 Tl = VSUB(Tf, Tk);
cannam@95 219 Tt = VSUB(Tq, Ts);
cannam@95 220 Tu = VADD(Tl, Tt);
cannam@95 221 TY = VADD(Ty, Tw);
cannam@95 222 TZ = VADD(TB, TD);
cannam@95 223 T10 = VADD(TY, TZ);
cannam@95 224 Tz = VSUB(Tw, Ty);
cannam@95 225 TE = VSUB(TB, TD);
cannam@95 226 TF = VADD(Tz, TE);
cannam@95 227 TV = VADD(Tf, Tk);
cannam@95 228 TW = VADD(Ts, Tq);
cannam@95 229 TX = VADD(TV, TW);
cannam@95 230 T4 = VADD(T1, T3);
cannam@95 231 T5 = LDW(&(W[TWVL * 8]));
cannam@95 232 T9 = VZMULIJ(T5, VSUB(T7, T8));
cannam@95 233 Ta = VSUB(T4, T9);
cannam@95 234 TU = VADD(T4, T9);
cannam@95 235 }
cannam@95 236 TL = VSUB(Tl, Tt);
cannam@95 237 TM = VSUB(TE, Tz);
cannam@95 238 TN = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), TL, VMUL(LDK(KP587785252), TM))));
cannam@95 239 TR = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), TL, VMUL(LDK(KP951056516), TM))));
cannam@95 240 TI = VMUL(LDK(KP279508497), VSUB(Tu, TF));
cannam@95 241 TG = VADD(Tu, TF);
cannam@95 242 TJ = VFNMS(LDK(KP125000000), TG, VMUL(LDK(KP500000000), Ta));
cannam@95 243 TH = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, TG)));
cannam@95 244 TQ = VSUB(TJ, TI);
cannam@95 245 TK = VADD(TI, TJ);
cannam@95 246 ST(&(Rm[WS(rs, 4)]), TH, -ms, &(Rm[0]));
cannam@95 247 TT = VCONJ(VADD(TQ, TR));
cannam@95 248 ST(&(Rm[WS(rs, 2)]), TT, -ms, &(Rm[0]));
cannam@95 249 TO = VSUB(TK, TN);
cannam@95 250 ST(&(Rp[WS(rs, 1)]), TO, ms, &(Rp[WS(rs, 1)]));
cannam@95 251 TP = VCONJ(VADD(TK, TN));
cannam@95 252 ST(&(Rm[0]), TP, -ms, &(Rm[0]));
cannam@95 253 TS = VSUB(TQ, TR);
cannam@95 254 ST(&(Rp[WS(rs, 3)]), TS, ms, &(Rp[WS(rs, 1)]));
cannam@95 255 T16 = VSUB(TZ, TY);
cannam@95 256 T17 = VSUB(TV, TW);
cannam@95 257 T18 = VMUL(LDK(KP500000000), VBYI(VFNMS(LDK(KP587785252), T17, VMUL(LDK(KP951056516), T16))));
cannam@95 258 T1c = VMUL(LDK(KP500000000), VBYI(VFMA(LDK(KP951056516), T17, VMUL(LDK(KP587785252), T16))));
cannam@95 259 T14 = VMUL(LDK(KP279508497), VSUB(TX, T10));
cannam@95 260 T11 = VADD(TX, T10);
cannam@95 261 T13 = VFNMS(LDK(KP125000000), T11, VMUL(LDK(KP500000000), TU));
cannam@95 262 T12 = VMUL(LDK(KP500000000), VADD(TU, T11));
cannam@95 263 T1b = VADD(T14, T13);
cannam@95 264 T15 = VSUB(T13, T14);
cannam@95 265 ST(&(Rp[0]), T12, ms, &(Rp[0]));
cannam@95 266 T1e = VADD(T1b, T1c);
cannam@95 267 ST(&(Rp[WS(rs, 4)]), T1e, ms, &(Rp[0]));
cannam@95 268 T19 = VCONJ(VSUB(T15, T18));
cannam@95 269 ST(&(Rm[WS(rs, 1)]), T19, -ms, &(Rm[WS(rs, 1)]));
cannam@95 270 T1a = VADD(T15, T18);
cannam@95 271 ST(&(Rp[WS(rs, 2)]), T1a, ms, &(Rp[0]));
cannam@95 272 T1d = VCONJ(VSUB(T1b, T1c));
cannam@95 273 ST(&(Rm[WS(rs, 3)]), T1d, -ms, &(Rm[WS(rs, 1)]));
cannam@95 274 }
cannam@95 275 }
cannam@95 276 VLEAVE();
cannam@95 277 }
cannam@95 278
cannam@95 279 static const tw_instr twinstr[] = {
cannam@95 280 VTW(1, 1),
cannam@95 281 VTW(1, 2),
cannam@95 282 VTW(1, 3),
cannam@95 283 VTW(1, 4),
cannam@95 284 VTW(1, 5),
cannam@95 285 VTW(1, 6),
cannam@95 286 VTW(1, 7),
cannam@95 287 VTW(1, 8),
cannam@95 288 VTW(1, 9),
cannam@95 289 {TW_NEXT, VL, 0}
cannam@95 290 };
cannam@95 291
cannam@95 292 static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cfdftv_10"), twinstr, &GENUS, {55, 32, 6, 0} };
cannam@95 293
cannam@95 294 void XSIMD(codelet_hc2cfdftv_10) (planner *p) {
cannam@95 295 X(khc2c_register) (p, hc2cfdftv_10, &desc, HC2C_VIA_DFT);
cannam@95 296 }
cannam@95 297 #endif /* HAVE_FMA */