annotate src/fftw-3.3.3/mpi/transpose-recurse.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* Recursive "radix-r" distributed transpose, which breaks a transpose
cannam@95 22 over p processes into p/r transposes over r processes plus r
cannam@95 23 transposes over p/r processes. If performed recursively, this
cannam@95 24 produces a total of O(p log p) messages vs. O(p^2) messages for a
cannam@95 25 direct approach.
cannam@95 26
cannam@95 27 However, this is not necessarily an improvement. The total size of
cannam@95 28 all the messages is actually increased from O(N) to O(N log p)
cannam@95 29 where N is the total data size. Also, the amount of local data
cannam@95 30 rearrangement is increased. So, it's not clear, a priori, what the
cannam@95 31 best algorithm will be, and we'll leave it to the planner. (In
cannam@95 32 theory and practice, it looks like this becomes advantageous for
cannam@95 33 large p, in the limit where the message sizes are small and
cannam@95 34 latency-dominated.)
cannam@95 35 */
cannam@95 36
cannam@95 37 #include "mpi-transpose.h"
cannam@95 38 #include <string.h>
cannam@95 39
cannam@95 40 typedef struct {
cannam@95 41 solver super;
cannam@95 42 int (*radix)(int np);
cannam@95 43 const char *nam;
cannam@95 44 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
cannam@95 45 } S;
cannam@95 46
cannam@95 47 typedef struct {
cannam@95 48 plan_mpi_transpose super;
cannam@95 49
cannam@95 50 plan *cld1, *cldtr, *cldtm;
cannam@95 51 int preserve_input;
cannam@95 52
cannam@95 53 int r; /* "radix" */
cannam@95 54 const char *nam;
cannam@95 55 } P;
cannam@95 56
cannam@95 57 static void apply(const plan *ego_, R *I, R *O)
cannam@95 58 {
cannam@95 59 const P *ego = (const P *) ego_;
cannam@95 60 plan_rdft *cld1, *cldtr, *cldtm;
cannam@95 61
cannam@95 62 cld1 = (plan_rdft *) ego->cld1;
cannam@95 63 if (cld1) cld1->apply((plan *) cld1, I, O);
cannam@95 64
cannam@95 65 if (ego->preserve_input) I = O;
cannam@95 66
cannam@95 67 cldtr = (plan_rdft *) ego->cldtr;
cannam@95 68 if (cldtr) cldtr->apply((plan *) cldtr, O, I);
cannam@95 69
cannam@95 70 cldtm = (plan_rdft *) ego->cldtm;
cannam@95 71 if (cldtm) cldtm->apply((plan *) cldtm, I, O);
cannam@95 72 }
cannam@95 73
cannam@95 74 static int radix_sqrt(int np)
cannam@95 75 {
cannam@95 76 int r;
cannam@95 77 for (r = (int) (X(isqrt)(np)); np % r != 0; ++r)
cannam@95 78 ;
cannam@95 79 return r;
cannam@95 80 }
cannam@95 81
cannam@95 82 static int radix_first(int np)
cannam@95 83 {
cannam@95 84 int r = (int) (X(first_divisor)(np));
cannam@95 85 return (r >= (int) (X(isqrt)(np)) ? 0 : r);
cannam@95 86 }
cannam@95 87
cannam@95 88 /* the local allocated space on process pe required for the given transpose
cannam@95 89 dimensions and block sizes */
cannam@95 90 static INT transpose_space(INT nx, INT ny, INT block, INT tblock, int pe)
cannam@95 91 {
cannam@95 92 return X(imax)(XM(block)(nx, block, pe) * ny,
cannam@95 93 nx * XM(block)(ny, tblock, pe));
cannam@95 94 }
cannam@95 95
cannam@95 96 /* check whether the recursive transposes fit within the space
cannam@95 97 that must have been allocated on each process for this transpose;
cannam@95 98 this must be modified if the subdivision in mkplan is changed! */
cannam@95 99 static int enough_space(INT nx, INT ny, INT block, INT tblock,
cannam@95 100 int r, int n_pes)
cannam@95 101 {
cannam@95 102 int pe;
cannam@95 103 int m = n_pes / r;
cannam@95 104 for (pe = 0; pe < n_pes; ++pe) {
cannam@95 105 INT space = transpose_space(nx, ny, block, tblock, pe);
cannam@95 106 INT b1 = XM(block)(nx, r * block, pe / r);
cannam@95 107 INT b2 = XM(block)(ny, m * tblock, pe % r);
cannam@95 108 if (transpose_space(b1, ny, block, m*tblock, pe % r) > space
cannam@95 109 || transpose_space(nx, b2, r*block, tblock, pe / r) > space)
cannam@95 110 return 0;
cannam@95 111 }
cannam@95 112 return 1;
cannam@95 113 }
cannam@95 114
cannam@95 115 /* In theory, transpose-recurse becomes advantageous for message sizes
cannam@95 116 below some minimum, assuming that the time is dominated by
cannam@95 117 communications. In practice, we want to constrain the minimum
cannam@95 118 message size for transpose-recurse to keep the planning time down.
cannam@95 119 I've set this conservatively according to some simple experiments
cannam@95 120 on a Cray XT3 where the crossover message size was 128, although on
cannam@95 121 a larger-latency machine the crossover will be larger. */
cannam@95 122 #define SMALL_MESSAGE 2048
cannam@95 123
cannam@95 124 static int applicable(const S *ego, const problem *p_,
cannam@95 125 const planner *plnr, int *r)
cannam@95 126 {
cannam@95 127 const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
cannam@95 128 int n_pes;
cannam@95 129 MPI_Comm_size(p->comm, &n_pes);
cannam@95 130 return (1
cannam@95 131 && p->tblock * n_pes == p->ny
cannam@95 132 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
cannam@95 133 && p->I != p->O))
cannam@95 134 && (*r = ego->radix(n_pes)) && *r < n_pes && *r > 1
cannam@95 135 && enough_space(p->nx, p->ny, p->block, p->tblock, *r, n_pes)
cannam@95 136 && (!CONSERVE_MEMORYP(plnr) || *r > 8
cannam@95 137 || !X(toobig)((p->nx * (p->ny / n_pes) * p->vn) / *r))
cannam@95 138 && (!NO_SLOWP(plnr) ||
cannam@95 139 (p->nx * (p->ny / n_pes) * p->vn) / n_pes <= SMALL_MESSAGE)
cannam@95 140 && ONLY_TRANSPOSEDP(p->flags)
cannam@95 141 );
cannam@95 142 }
cannam@95 143
cannam@95 144 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@95 145 {
cannam@95 146 P *ego = (P *) ego_;
cannam@95 147 X(plan_awake)(ego->cld1, wakefulness);
cannam@95 148 X(plan_awake)(ego->cldtr, wakefulness);
cannam@95 149 X(plan_awake)(ego->cldtm, wakefulness);
cannam@95 150 }
cannam@95 151
cannam@95 152 static void destroy(plan *ego_)
cannam@95 153 {
cannam@95 154 P *ego = (P *) ego_;
cannam@95 155 X(plan_destroy_internal)(ego->cldtm);
cannam@95 156 X(plan_destroy_internal)(ego->cldtr);
cannam@95 157 X(plan_destroy_internal)(ego->cld1);
cannam@95 158 }
cannam@95 159
cannam@95 160 static void print(const plan *ego_, printer *p)
cannam@95 161 {
cannam@95 162 const P *ego = (const P *) ego_;
cannam@95 163 p->print(p, "(mpi-transpose-recurse/%s/%d%s%(%p%)%(%p%)%(%p%))",
cannam@95 164 ego->nam, ego->r, ego->preserve_input==2 ?"/p":"",
cannam@95 165 ego->cld1, ego->cldtr, ego->cldtm);
cannam@95 166 }
cannam@95 167
cannam@95 168 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 169 {
cannam@95 170 const S *ego = (const S *) ego_;
cannam@95 171 const problem_mpi_transpose *p;
cannam@95 172 P *pln;
cannam@95 173 plan *cld1 = 0, *cldtr = 0, *cldtm = 0;
cannam@95 174 R *I, *O;
cannam@95 175 int me, np, r, m;
cannam@95 176 INT b;
cannam@95 177 MPI_Comm comm2;
cannam@95 178 static const plan_adt padt = {
cannam@95 179 XM(transpose_solve), awake, print, destroy
cannam@95 180 };
cannam@95 181
cannam@95 182 UNUSED(ego);
cannam@95 183
cannam@95 184 if (!applicable(ego, p_, plnr, &r))
cannam@95 185 return (plan *) 0;
cannam@95 186
cannam@95 187 p = (const problem_mpi_transpose *) p_;
cannam@95 188
cannam@95 189 MPI_Comm_size(p->comm, &np);
cannam@95 190 MPI_Comm_rank(p->comm, &me);
cannam@95 191 m = np / r;
cannam@95 192 A(r * m == np);
cannam@95 193
cannam@95 194 I = p->I; O = p->O;
cannam@95 195
cannam@95 196 b = XM(block)(p->nx, p->block, me);
cannam@95 197 A(p->tblock * np == p->ny); /* this is currently required for cld1 */
cannam@95 198 if (p->flags & TRANSPOSED_IN) {
cannam@95 199 /* m x r x (bt x b x vn) -> r x m x (bt x b x vn) */
cannam@95 200 INT vn = p->vn * b * p->tblock;
cannam@95 201 cld1 = X(mkplan_f_d)(plnr,
cannam@95 202 X(mkproblem_rdft_0_d)(X(mktensor_3d)
cannam@95 203 (m, r*vn, vn,
cannam@95 204 r, vn, m*vn,
cannam@95 205 vn, 1, 1),
cannam@95 206 I, O),
cannam@95 207 0, 0, NO_SLOW);
cannam@95 208 }
cannam@95 209 else if (I != O) { /* combine cld1 with TRANSPOSED_IN permutation */
cannam@95 210 /* b x m x r x bt x vn -> r x m x bt x b x vn */
cannam@95 211 INT vn = p->vn;
cannam@95 212 INT bt = p->tblock;
cannam@95 213 cld1 = X(mkplan_f_d)(plnr,
cannam@95 214 X(mkproblem_rdft_0_d)(X(mktensor_5d)
cannam@95 215 (b, m*r*bt*vn, vn,
cannam@95 216 m, r*bt*vn, bt*b*vn,
cannam@95 217 r, bt*vn, m*bt*b*vn,
cannam@95 218 bt, vn, b*vn,
cannam@95 219 vn, 1, 1),
cannam@95 220 I, O),
cannam@95 221 0, 0, NO_SLOW);
cannam@95 222 }
cannam@95 223 else { /* TRANSPOSED_IN permutation must be separate for in-place */
cannam@95 224 /* b x (m x r) x bt x vn -> b x (r x m) x bt x vn */
cannam@95 225 INT vn = p->vn * p->tblock;
cannam@95 226 cld1 = X(mkplan_f_d)(plnr,
cannam@95 227 X(mkproblem_rdft_0_d)(X(mktensor_4d)
cannam@95 228 (m, r*vn, vn,
cannam@95 229 r, vn, m*vn,
cannam@95 230 vn, 1, 1,
cannam@95 231 b, np*vn, np*vn),
cannam@95 232 I, O),
cannam@95 233 0, 0, NO_SLOW);
cannam@95 234 }
cannam@95 235 if (XM(any_true)(!cld1, p->comm)) goto nada;
cannam@95 236
cannam@95 237 if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O;
cannam@95 238
cannam@95 239 b = XM(block)(p->nx, r * p->block, me / r);
cannam@95 240 MPI_Comm_split(p->comm, me / r, me, &comm2);
cannam@95 241 if (b)
cannam@95 242 cldtr = X(mkplan_d)(plnr, XM(mkproblem_transpose)
cannam@95 243 (b, p->ny, p->vn,
cannam@95 244 O, I, p->block, m * p->tblock, comm2,
cannam@95 245 p->I != p->O
cannam@95 246 ? TRANSPOSED_IN : (p->flags & TRANSPOSED_IN)));
cannam@95 247 MPI_Comm_free(&comm2);
cannam@95 248 if (XM(any_true)(b && !cldtr, p->comm)) goto nada;
cannam@95 249
cannam@95 250 b = XM(block)(p->ny, m * p->tblock, me % r);
cannam@95 251 MPI_Comm_split(p->comm, me % r, me, &comm2);
cannam@95 252 if (b)
cannam@95 253 cldtm = X(mkplan_d)(plnr, XM(mkproblem_transpose)
cannam@95 254 (p->nx, b, p->vn,
cannam@95 255 I, O, r * p->block, p->tblock, comm2,
cannam@95 256 TRANSPOSED_IN | (p->flags & TRANSPOSED_OUT)));
cannam@95 257 MPI_Comm_free(&comm2);
cannam@95 258 if (XM(any_true)(b && !cldtm, p->comm)) goto nada;
cannam@95 259
cannam@95 260 pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);
cannam@95 261
cannam@95 262 pln->cld1 = cld1;
cannam@95 263 pln->cldtr = cldtr;
cannam@95 264 pln->cldtm = cldtm;
cannam@95 265 pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
cannam@95 266 pln->r = r;
cannam@95 267 pln->nam = ego->nam;
cannam@95 268
cannam@95 269 pln->super.super.ops = cld1->ops;
cannam@95 270 if (cldtr) X(ops_add2)(&cldtr->ops, &pln->super.super.ops);
cannam@95 271 if (cldtm) X(ops_add2)(&cldtm->ops, &pln->super.super.ops);
cannam@95 272
cannam@95 273 return &(pln->super.super);
cannam@95 274
cannam@95 275 nada:
cannam@95 276 X(plan_destroy_internal)(cldtm);
cannam@95 277 X(plan_destroy_internal)(cldtr);
cannam@95 278 X(plan_destroy_internal)(cld1);
cannam@95 279 return (plan *) 0;
cannam@95 280 }
cannam@95 281
cannam@95 282 static solver *mksolver(int preserve_input,
cannam@95 283 int (*radix)(int np), const char *nam)
cannam@95 284 {
cannam@95 285 static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
cannam@95 286 S *slv = MKSOLVER(S, &sadt);
cannam@95 287 slv->preserve_input = preserve_input;
cannam@95 288 slv->radix = radix;
cannam@95 289 slv->nam = nam;
cannam@95 290 return &(slv->super);
cannam@95 291 }
cannam@95 292
cannam@95 293 void XM(transpose_recurse_register)(planner *p)
cannam@95 294 {
cannam@95 295 int preserve_input;
cannam@95 296 for (preserve_input = 0; preserve_input <= 1; ++preserve_input) {
cannam@95 297 REGISTER_SOLVER(p, mksolver(preserve_input, radix_sqrt, "sqrt"));
cannam@95 298 REGISTER_SOLVER(p, mksolver(preserve_input, radix_first, "first"));
cannam@95 299 }
cannam@95 300 }