annotate src/fftw-3.3.3/mpi/dft-rank1.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* Complex DFTs of rank == 1 via six-step algorithm. */
cannam@95 22
cannam@95 23 #include "mpi-dft.h"
cannam@95 24 #include "mpi-transpose.h"
cannam@95 25 #include "dft.h"
cannam@95 26
cannam@95 27 typedef struct {
cannam@95 28 solver super;
cannam@95 29 rdftapply apply; /* apply_ddft_first or apply_ddft_last */
cannam@95 30 int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
cannam@95 31 } S;
cannam@95 32
cannam@95 33 typedef struct {
cannam@95 34 plan_mpi_dft super;
cannam@95 35
cannam@95 36 triggen *t;
cannam@95 37 plan *cldt, *cld_ddft, *cld_dft;
cannam@95 38 INT roff, ioff;
cannam@95 39 int preserve_input;
cannam@95 40 INT vn, xmin, xmax, xs, m, r;
cannam@95 41 } P;
cannam@95 42
cannam@95 43 static void do_twiddle(triggen *t, INT ir, INT m, INT vn, R *xr, R *xi)
cannam@95 44 {
cannam@95 45 void (*rotate)(triggen *, INT, R, R, R *) = t->rotate;
cannam@95 46 INT im, iv;
cannam@95 47 for (im = 0; im < m; ++im)
cannam@95 48 for (iv = 0; iv < vn; ++iv) {
cannam@95 49 /* TODO: modify/inline rotate function
cannam@95 50 so that it can do whole vn vector at once? */
cannam@95 51 R c[2];
cannam@95 52 rotate(t, ir * im, *xr, *xi, c);
cannam@95 53 *xr = c[0]; *xi = c[1];
cannam@95 54 xr += 2; xi += 2;
cannam@95 55 }
cannam@95 56 }
cannam@95 57
cannam@95 58 /* radix-r DFT of size r*m. This is equivalent to an m x r 2d DFT,
cannam@95 59 plus twiddle factors between the size-m and size-r 1d DFTs, where
cannam@95 60 the m dimension is initially distributed. The output is transposed
cannam@95 61 to r x m where the r dimension is distributed.
cannam@95 62
cannam@95 63 This algorithm follows the general sequence:
cannam@95 64 global transpose (m x r -> r x m)
cannam@95 65 DFTs of size m
cannam@95 66 multiply by twiddles + global transpose (r x m -> m x r)
cannam@95 67 DFTs of size r
cannam@95 68 global transpose (m x r -> r x m)
cannam@95 69 where the multiplication by twiddles can come before or after
cannam@95 70 the middle transpose. The first/last transposes are omitted
cannam@95 71 for SCRAMBLED_IN/OUT formats, respectively.
cannam@95 72
cannam@95 73 However, we wish to exploit our dft-rank1-bigvec solver, which
cannam@95 74 solves a vector of distributed DFTs via transpose+dft+transpose.
cannam@95 75 Therefore, we can group *either* the DFTs of size m *or* the
cannam@95 76 DFTs of size r with their surrounding transposes as a single
cannam@95 77 distributed-DFT (ddft) plan. These two variations correspond to
cannam@95 78 apply_ddft_first or apply_ddft_last, respectively.
cannam@95 79 */
cannam@95 80
cannam@95 81 static void apply_ddft_first(const plan *ego_, R *I, R *O)
cannam@95 82 {
cannam@95 83 const P *ego = (const P *) ego_;
cannam@95 84 plan_dft *cld_dft;
cannam@95 85 plan_rdft *cldt, *cld_ddft;
cannam@95 86 INT roff, ioff, im, mmax, ms, r, vn;
cannam@95 87 triggen *t;
cannam@95 88 R *dI, *dO;
cannam@95 89
cannam@95 90 /* distributed size-m DFTs, with output in m x r format */
cannam@95 91 cld_ddft = (plan_rdft *) ego->cld_ddft;
cannam@95 92 cld_ddft->apply(ego->cld_ddft, I, O);
cannam@95 93
cannam@95 94 cldt = (plan_rdft *) ego->cldt;
cannam@95 95 if (ego->preserve_input || !cldt) I = O;
cannam@95 96
cannam@95 97 /* twiddle multiplications, followed by 1d DFTs of size-r */
cannam@95 98 cld_dft = (plan_dft *) ego->cld_dft;
cannam@95 99 roff = ego->roff; ioff = ego->ioff;
cannam@95 100 mmax = ego->xmax; ms = ego->xs;
cannam@95 101 t = ego->t; r = ego->r; vn = ego->vn;
cannam@95 102 dI = O; dO = I;
cannam@95 103 for (im = ego->xmin; im <= mmax; ++im) {
cannam@95 104 do_twiddle(t, im, r, vn, dI+roff, dI+ioff);
cannam@95 105 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
cannam@95 106 dI += ms; dO += ms;
cannam@95 107 }
cannam@95 108
cannam@95 109 /* final global transpose (m x r -> r x m), if not SCRAMBLED_OUT */
cannam@95 110 if (cldt)
cannam@95 111 cldt->apply((plan *) cldt, I, O);
cannam@95 112 }
cannam@95 113
cannam@95 114 static void apply_ddft_last(const plan *ego_, R *I, R *O)
cannam@95 115 {
cannam@95 116 const P *ego = (const P *) ego_;
cannam@95 117 plan_dft *cld_dft;
cannam@95 118 plan_rdft *cldt, *cld_ddft;
cannam@95 119 INT roff, ioff, ir, rmax, rs, m, vn;
cannam@95 120 triggen *t;
cannam@95 121 R *dI, *dO0, *dO;
cannam@95 122
cannam@95 123 /* initial global transpose (m x r -> r x m), if not SCRAMBLED_IN */
cannam@95 124 cldt = (plan_rdft *) ego->cldt;
cannam@95 125 if (cldt) {
cannam@95 126 cldt->apply((plan *) cldt, I, O);
cannam@95 127 dI = O;
cannam@95 128 }
cannam@95 129 else
cannam@95 130 dI = I;
cannam@95 131 if (ego->preserve_input) dO = O; else dO = I;
cannam@95 132 dO0 = dO;
cannam@95 133
cannam@95 134 /* 1d DFTs of size m, followed by twiddle multiplications */
cannam@95 135 cld_dft = (plan_dft *) ego->cld_dft;
cannam@95 136 roff = ego->roff; ioff = ego->ioff;
cannam@95 137 rmax = ego->xmax; rs = ego->xs;
cannam@95 138 t = ego->t; m = ego->m; vn = ego->vn;
cannam@95 139 for (ir = ego->xmin; ir <= rmax; ++ir) {
cannam@95 140 cld_dft->apply((plan *) cld_dft, dI+roff, dI+ioff, dO+roff, dO+ioff);
cannam@95 141 do_twiddle(t, ir, m, vn, dO+roff, dO+ioff);
cannam@95 142 dI += rs; dO += rs;
cannam@95 143 }
cannam@95 144
cannam@95 145 /* distributed size-r DFTs, with output in r x m format */
cannam@95 146 cld_ddft = (plan_rdft *) ego->cld_ddft;
cannam@95 147 cld_ddft->apply(ego->cld_ddft, dO0, O);
cannam@95 148 }
cannam@95 149
cannam@95 150 static int applicable(const S *ego, const problem *p_,
cannam@95 151 const planner *plnr,
cannam@95 152 INT *r, INT rblock[2], INT mblock[2])
cannam@95 153 {
cannam@95 154 const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
cannam@95 155 int n_pes;
cannam@95 156 MPI_Comm_size(p->comm, &n_pes);
cannam@95 157 return (1
cannam@95 158 && p->sz->rnk == 1
cannam@95 159
cannam@95 160 && ONLY_SCRAMBLEDP(p->flags)
cannam@95 161
cannam@95 162 && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
cannam@95 163 && p->I != p->O))
cannam@95 164
cannam@95 165 && (!(p->flags & SCRAMBLED_IN) || ego->apply == apply_ddft_last)
cannam@95 166 && (!(p->flags & SCRAMBLED_OUT) || ego->apply == apply_ddft_first)
cannam@95 167
cannam@95 168 && (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */
cannam@95 169 || !XM(dft_serial_applicable)(p))
cannam@95 170
cannam@95 171 /* disallow if dft-rank1-bigvec is applicable since the
cannam@95 172 data distribution may be slightly different (ugh!) */
cannam@95 173 && (p->vn < n_pes || p->flags)
cannam@95 174
cannam@95 175 && (*r = XM(choose_radix)(p->sz->dims[0], n_pes,
cannam@95 176 p->flags, p->sign,
cannam@95 177 rblock, mblock))
cannam@95 178
cannam@95 179 /* ddft_first or last has substantial advantages in the
cannam@95 180 bigvec transpositions for the common case where
cannam@95 181 n_pes == n/r or r, respectively */
cannam@95 182 && (!NO_UGLYP(plnr)
cannam@95 183 || !(*r == n_pes && ego->apply == apply_ddft_first)
cannam@95 184 || !(p->sz->dims[0].n / *r == n_pes
cannam@95 185 && ego->apply == apply_ddft_last))
cannam@95 186 );
cannam@95 187 }
cannam@95 188
cannam@95 189 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@95 190 {
cannam@95 191 P *ego = (P *) ego_;
cannam@95 192 X(plan_awake)(ego->cldt, wakefulness);
cannam@95 193 X(plan_awake)(ego->cld_dft, wakefulness);
cannam@95 194 X(plan_awake)(ego->cld_ddft, wakefulness);
cannam@95 195
cannam@95 196 switch (wakefulness) {
cannam@95 197 case SLEEPY:
cannam@95 198 X(triggen_destroy)(ego->t); ego->t = 0;
cannam@95 199 break;
cannam@95 200 default:
cannam@95 201 ego->t = X(mktriggen)(AWAKE_SQRTN_TABLE, ego->r * ego->m);
cannam@95 202 break;
cannam@95 203 }
cannam@95 204 }
cannam@95 205
cannam@95 206 static void destroy(plan *ego_)
cannam@95 207 {
cannam@95 208 P *ego = (P *) ego_;
cannam@95 209 X(plan_destroy_internal)(ego->cldt);
cannam@95 210 X(plan_destroy_internal)(ego->cld_dft);
cannam@95 211 X(plan_destroy_internal)(ego->cld_ddft);
cannam@95 212 }
cannam@95 213
cannam@95 214 static void print(const plan *ego_, printer *p)
cannam@95 215 {
cannam@95 216 const P *ego = (const P *) ego_;
cannam@95 217 p->print(p, "(mpi-dft-rank1/%D%s%s%(%p%)%(%p%)%(%p%))",
cannam@95 218 ego->r,
cannam@95 219 ego->super.apply == apply_ddft_first ? "/first" : "/last",
cannam@95 220 ego->preserve_input==2 ?"/p":"",
cannam@95 221 ego->cld_ddft, ego->cld_dft, ego->cldt);
cannam@95 222 }
cannam@95 223
cannam@95 224 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 225 {
cannam@95 226 const S *ego = (const S *) ego_;
cannam@95 227 const problem_mpi_dft *p;
cannam@95 228 P *pln;
cannam@95 229 plan *cld_dft = 0, *cld_ddft = 0, *cldt = 0;
cannam@95 230 R *ri, *ii, *ro, *io, *I, *O;
cannam@95 231 INT r, rblock[2], m, mblock[2], rp, mp, mpblock[2], mpb;
cannam@95 232 int my_pe, n_pes, preserve_input, ddft_first;
cannam@95 233 dtensor *sz;
cannam@95 234 static const plan_adt padt = {
cannam@95 235 XM(dft_solve), awake, print, destroy
cannam@95 236 };
cannam@95 237
cannam@95 238 UNUSED(ego);
cannam@95 239
cannam@95 240 if (!applicable(ego, p_, plnr, &r, rblock, mblock))
cannam@95 241 return (plan *) 0;
cannam@95 242
cannam@95 243 p = (const problem_mpi_dft *) p_;
cannam@95 244
cannam@95 245 MPI_Comm_rank(p->comm, &my_pe);
cannam@95 246 MPI_Comm_size(p->comm, &n_pes);
cannam@95 247
cannam@95 248 m = p->sz->dims[0].n / r;
cannam@95 249
cannam@95 250 /* some hackery so that we can plan both ddft_first and ddft_last
cannam@95 251 as if they were ddft_first */
cannam@95 252 if ((ddft_first = (ego->apply == apply_ddft_first))) {
cannam@95 253 rp = r; mp = m;
cannam@95 254 mpblock[IB] = mblock[IB]; mpblock[OB] = mblock[OB];
cannam@95 255 mpb = XM(block)(mp, mpblock[OB], my_pe);
cannam@95 256 }
cannam@95 257 else {
cannam@95 258 rp = m; mp = r;
cannam@95 259 mpblock[IB] = rblock[IB]; mpblock[OB] = rblock[OB];
cannam@95 260 mpb = XM(block)(mp, mpblock[IB], my_pe);
cannam@95 261 }
cannam@95 262
cannam@95 263 preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
cannam@95 264
cannam@95 265 sz = XM(mkdtensor)(1);
cannam@95 266 sz->dims[0].n = mp;
cannam@95 267 sz->dims[0].b[IB] = mpblock[IB];
cannam@95 268 sz->dims[0].b[OB] = mpblock[OB];
cannam@95 269 I = (ddft_first || !preserve_input) ? p->I : p->O;
cannam@95 270 O = p->O;
cannam@95 271 cld_ddft = X(mkplan_d)(plnr, XM(mkproblem_dft_d)(sz, rp * p->vn,
cannam@95 272 I, O, p->comm, p->sign,
cannam@95 273 RANK1_BIGVEC_ONLY));
cannam@95 274 if (XM(any_true)(!cld_ddft, p->comm)) goto nada;
cannam@95 275
cannam@95 276 I = TAINT((ddft_first || !p->flags) ? p->O : p->I, rp * p->vn * 2);
cannam@95 277 O = TAINT((preserve_input || (ddft_first && p->flags)) ? p->O : p->I,
cannam@95 278 rp * p->vn * 2);
cannam@95 279 X(extract_reim)(p->sign, I, &ri, &ii);
cannam@95 280 X(extract_reim)(p->sign, O, &ro, &io);
cannam@95 281 cld_dft = X(mkplan_d)(plnr,
cannam@95 282 X(mkproblem_dft_d)(X(mktensor_1d)(rp, p->vn*2,p->vn*2),
cannam@95 283 X(mktensor_1d)(p->vn, 2, 2),
cannam@95 284 ri, ii, ro, io));
cannam@95 285 if (XM(any_true)(!cld_dft, p->comm)) goto nada;
cannam@95 286
cannam@95 287 if (!p->flags) { /* !(SCRAMBLED_IN or SCRAMBLED_OUT) */
cannam@95 288 I = (ddft_first && preserve_input) ? p->O : p->I;
cannam@95 289 O = p->O;
cannam@95 290 cldt = X(mkplan_d)(plnr,
cannam@95 291 XM(mkproblem_transpose)(
cannam@95 292 m, r, p->vn * 2,
cannam@95 293 I, O,
cannam@95 294 ddft_first ? mblock[OB] : mblock[IB],
cannam@95 295 ddft_first ? rblock[OB] : rblock[IB],
cannam@95 296 p->comm, 0));
cannam@95 297 if (XM(any_true)(!cldt, p->comm)) goto nada;
cannam@95 298 }
cannam@95 299
cannam@95 300 pln = MKPLAN_MPI_DFT(P, &padt, ego->apply);
cannam@95 301
cannam@95 302 pln->cld_ddft = cld_ddft;
cannam@95 303 pln->cld_dft = cld_dft;
cannam@95 304 pln->cldt = cldt;
cannam@95 305 pln->preserve_input = preserve_input;
cannam@95 306 X(extract_reim)(p->sign, p->O, &ro, &io);
cannam@95 307 pln->roff = ro - p->O;
cannam@95 308 pln->ioff = io - p->O;
cannam@95 309 pln->vn = p->vn;
cannam@95 310 pln->m = m;
cannam@95 311 pln->r = r;
cannam@95 312 pln->xmin = (ddft_first ? mblock[OB] : rblock[IB]) * my_pe;
cannam@95 313 pln->xmax = pln->xmin + mpb - 1;
cannam@95 314 pln->xs = rp * p->vn * 2;
cannam@95 315 pln->t = 0;
cannam@95 316
cannam@95 317 X(ops_add)(&cld_ddft->ops, &cld_dft->ops, &pln->super.super.ops);
cannam@95 318 if (cldt) X(ops_add2)(&cldt->ops, &pln->super.super.ops);
cannam@95 319 {
cannam@95 320 double n0 = (1 + pln->xmax - pln->xmin) * (mp - 1) * pln->vn;
cannam@95 321 pln->super.super.ops.mul += 8 * n0;
cannam@95 322 pln->super.super.ops.add += 4 * n0;
cannam@95 323 pln->super.super.ops.other += 8 * n0;
cannam@95 324 }
cannam@95 325
cannam@95 326 return &(pln->super.super);
cannam@95 327
cannam@95 328 nada:
cannam@95 329 X(plan_destroy_internal)(cldt);
cannam@95 330 X(plan_destroy_internal)(cld_dft);
cannam@95 331 X(plan_destroy_internal)(cld_ddft);
cannam@95 332 return (plan *) 0;
cannam@95 333 }
cannam@95 334
cannam@95 335 static solver *mksolver(rdftapply apply, int preserve_input)
cannam@95 336 {
cannam@95 337 static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
cannam@95 338 S *slv = MKSOLVER(S, &sadt);
cannam@95 339 slv->apply = apply;
cannam@95 340 slv->preserve_input = preserve_input;
cannam@95 341 return &(slv->super);
cannam@95 342 }
cannam@95 343
cannam@95 344 void XM(dft_rank1_register)(planner *p)
cannam@95 345 {
cannam@95 346 rdftapply apply[] = { apply_ddft_first, apply_ddft_last };
cannam@95 347 unsigned int iapply;
cannam@95 348 int preserve_input;
cannam@95 349 for (iapply = 0; iapply < sizeof(apply) / sizeof(apply[0]); ++iapply)
cannam@95 350 for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
cannam@95 351 REGISTER_SOLVER(p, mksolver(apply[iapply], preserve_input));
cannam@95 352 }