cannam@95
|
1 (*
|
cannam@95
|
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
|
cannam@95
|
3 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
cannam@95
|
4 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
cannam@95
|
5 *
|
cannam@95
|
6 * This program is free software; you can redistribute it and/or modify
|
cannam@95
|
7 * it under the terms of the GNU General Public License as published by
|
cannam@95
|
8 * the Free Software Foundation; either version 2 of the License, or
|
cannam@95
|
9 * (at your option) any later version.
|
cannam@95
|
10 *
|
cannam@95
|
11 * This program is distributed in the hope that it will be useful,
|
cannam@95
|
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@95
|
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@95
|
14 * GNU General Public License for more details.
|
cannam@95
|
15 *
|
cannam@95
|
16 * You should have received a copy of the GNU General Public License
|
cannam@95
|
17 * along with this program; if not, write to the Free Software
|
cannam@95
|
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@95
|
19 *
|
cannam@95
|
20 *)
|
cannam@95
|
21
|
cannam@95
|
22 open Complex
|
cannam@95
|
23 open Util
|
cannam@95
|
24
|
cannam@95
|
25 let polyphase m a ph i = a (m * i + ph)
|
cannam@95
|
26
|
cannam@95
|
27 let rec divmod n i =
|
cannam@95
|
28 if (i < 0) then
|
cannam@95
|
29 let (a, b) = divmod n (i + n)
|
cannam@95
|
30 in (a - 1, b)
|
cannam@95
|
31 else (i / n, i mod n)
|
cannam@95
|
32
|
cannam@95
|
33 let unpolyphase m a i = let (x, y) = divmod m i in a y x
|
cannam@95
|
34
|
cannam@95
|
35 let lift2 f a b i = f (a i) (b i)
|
cannam@95
|
36
|
cannam@95
|
37 (* convolution of signals A and B *)
|
cannam@95
|
38 let rec conv na a nb b =
|
cannam@95
|
39 let rec naive na a nb b i =
|
cannam@95
|
40 sigma 0 na (fun j -> (a j) @* (b (i - j)))
|
cannam@95
|
41
|
cannam@95
|
42 and recur na a nb b =
|
cannam@95
|
43 if (na <= 1 || nb <= 1) then
|
cannam@95
|
44 naive na a nb b
|
cannam@95
|
45 else
|
cannam@95
|
46 let p = polyphase 2 in
|
cannam@95
|
47 let ee = conv (na - na / 2) (p a 0) (nb - nb / 2) (p b 0)
|
cannam@95
|
48 and eo = conv (na - na / 2) (p a 0) (nb / 2) (p b 1)
|
cannam@95
|
49 and oe = conv (na / 2) (p a 1) (nb - nb / 2) (p b 0)
|
cannam@95
|
50 and oo = conv (na / 2) (p a 1) (nb / 2) (p b 1) in
|
cannam@95
|
51 unpolyphase 2 (function
|
cannam@95
|
52 0 -> fun i -> (ee i) @+ (oo (i - 1))
|
cannam@95
|
53 | 1 -> fun i -> (eo i) @+ (oe i)
|
cannam@95
|
54 | _ -> failwith "recur")
|
cannam@95
|
55
|
cannam@95
|
56
|
cannam@95
|
57 (* Karatsuba variant 1: (a+bx)(c+dx) = (ac+bdxx)+((a+b)(c+d)-ac-bd)x *)
|
cannam@95
|
58 and karatsuba1 na a nb b =
|
cannam@95
|
59 let p = polyphase 2 in
|
cannam@95
|
60 let ae = p a 0 and nae = na - na / 2
|
cannam@95
|
61 and ao = p a 1 and nao = na / 2
|
cannam@95
|
62 and be = p b 0 and nbe = nb - nb / 2
|
cannam@95
|
63 and bo = p b 1 and nbo = nb / 2 in
|
cannam@95
|
64 let ae = infinite nae ae and ao = infinite nao ao
|
cannam@95
|
65 and be = infinite nbe be and bo = infinite nbo bo in
|
cannam@95
|
66 let aeo = lift2 (@+) ae ao and naeo = nae
|
cannam@95
|
67 and beo = lift2 (@+) be bo and nbeo = nbe in
|
cannam@95
|
68 let ee = conv nae ae nbe be
|
cannam@95
|
69 and oo = conv nao ao nbo bo
|
cannam@95
|
70 and eoeo = conv naeo aeo nbeo beo in
|
cannam@95
|
71
|
cannam@95
|
72 let q = function
|
cannam@95
|
73 0 -> fun i -> (ee i) @+ (oo (i - 1))
|
cannam@95
|
74 | 1 -> fun i -> (eoeo i) @- ((ee i) @+ (oo i))
|
cannam@95
|
75 | _ -> failwith "karatsuba1" in
|
cannam@95
|
76 unpolyphase 2 q
|
cannam@95
|
77
|
cannam@95
|
78 (* Karatsuba variant 2:
|
cannam@95
|
79 (a+bx)(c+dx) = ((a+b)c-b(c-dxx))+x((a+b)c-a(c-d)) *)
|
cannam@95
|
80 and karatsuba2 na a nb b =
|
cannam@95
|
81 let p = polyphase 2 in
|
cannam@95
|
82 let ae = p a 0 and nae = na - na / 2
|
cannam@95
|
83 and ao = p a 1 and nao = na / 2
|
cannam@95
|
84 and be = p b 0 and nbe = nb - nb / 2
|
cannam@95
|
85 and bo = p b 1 and nbo = nb / 2 in
|
cannam@95
|
86 let ae = infinite nae ae and ao = infinite nao ao
|
cannam@95
|
87 and be = infinite nbe be and bo = infinite nbo bo in
|
cannam@95
|
88
|
cannam@95
|
89 let c1 = conv nae (lift2 (@+) ae ao) nbe be
|
cannam@95
|
90 and c2 = conv nao ao (nbo + 1) (fun i -> be i @- bo (i - 1))
|
cannam@95
|
91 and c3 = conv nae ae nbe (lift2 (@-) be bo) in
|
cannam@95
|
92
|
cannam@95
|
93 let q = function
|
cannam@95
|
94 0 -> lift2 (@-) c1 c2
|
cannam@95
|
95 | 1 -> lift2 (@-) c1 c3
|
cannam@95
|
96 | _ -> failwith "karatsuba2" in
|
cannam@95
|
97 unpolyphase 2 q
|
cannam@95
|
98
|
cannam@95
|
99 and karatsuba na a nb b =
|
cannam@95
|
100 let m = na + nb - 1 in
|
cannam@95
|
101 if (m < !Magic.karatsuba_min) then
|
cannam@95
|
102 recur na a nb b
|
cannam@95
|
103 else
|
cannam@95
|
104 match !Magic.karatsuba_variant with
|
cannam@95
|
105 1 -> karatsuba1 na a nb b
|
cannam@95
|
106 | 2 -> karatsuba2 na a nb b
|
cannam@95
|
107 | _ -> failwith "unknown karatsuba variant"
|
cannam@95
|
108
|
cannam@95
|
109 and via_circular na a nb b =
|
cannam@95
|
110 let m = na + nb - 1 in
|
cannam@95
|
111 if (m < !Magic.circular_min) then
|
cannam@95
|
112 karatsuba na a nb b
|
cannam@95
|
113 else
|
cannam@95
|
114 let rec find_min n = if n >= m then n else find_min (2 * n) in
|
cannam@95
|
115 circular (find_min 1) a b
|
cannam@95
|
116
|
cannam@95
|
117 in
|
cannam@95
|
118 let a = infinite na a and b = infinite nb b in
|
cannam@95
|
119 let res = array (na + nb - 1) (via_circular na a nb b) in
|
cannam@95
|
120 infinite (na + nb - 1) res
|
cannam@95
|
121
|
cannam@95
|
122 and circular n a b =
|
cannam@95
|
123 let via_dft n a b =
|
cannam@95
|
124 let fa = Fft.dft (-1) n a
|
cannam@95
|
125 and fb = Fft.dft (-1) n b
|
cannam@95
|
126 and scale = inverse_int n in
|
cannam@95
|
127 let fab i = ((fa i) @* (fb i)) @* scale in
|
cannam@95
|
128 Fft.dft 1 n fab
|
cannam@95
|
129
|
cannam@95
|
130 in via_dft n a b
|