annotate src/fftw-3.3.3/dft/simd/common/t3bv_8.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:39:18 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include t3b.h -sign 1 */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 37 FP additions, 32 FP multiplications,
cannam@95 32 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
cannam@95 33 * 43 stack variables, 1 constants, and 16 memory accesses
cannam@95 34 */
cannam@95 35 #include "t3b.h"
cannam@95 36
cannam@95 37 static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 40 {
cannam@95 41 INT m;
cannam@95 42 R *x;
cannam@95 43 x = ii;
cannam@95 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@95 45 V T2, T3, Tb, T1, T5, Tn, Tq, T8, Td, T4, Ta, Tp, Tg, Ti, T9;
cannam@95 46 T2 = LDW(&(W[0]));
cannam@95 47 T3 = LDW(&(W[TWVL * 2]));
cannam@95 48 Tb = LDW(&(W[TWVL * 4]));
cannam@95 49 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 50 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 51 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 52 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 53 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 54 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 55 T4 = VZMUL(T2, T3);
cannam@95 56 Ta = VZMULJ(T2, T3);
cannam@95 57 Tp = VZMULJ(T2, Tb);
cannam@95 58 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 59 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 60 T9 = VZMUL(T2, T8);
cannam@95 61 {
cannam@95 62 V T6, To, Tc, Tr, Th, Tj;
cannam@95 63 T6 = VZMUL(T4, T5);
cannam@95 64 To = VZMUL(Ta, Tn);
cannam@95 65 Tc = VZMULJ(Ta, Tb);
cannam@95 66 Tr = VZMUL(Tp, Tq);
cannam@95 67 Th = VZMUL(Tb, Tg);
cannam@95 68 Tj = VZMUL(T3, Ti);
cannam@95 69 {
cannam@95 70 V Tx, T7, Te, Ts, Ty, Tk, TB;
cannam@95 71 Tx = VADD(T1, T6);
cannam@95 72 T7 = VSUB(T1, T6);
cannam@95 73 Te = VZMUL(Tc, Td);
cannam@95 74 Ts = VSUB(To, Tr);
cannam@95 75 Ty = VADD(To, Tr);
cannam@95 76 Tk = VSUB(Th, Tj);
cannam@95 77 TB = VADD(Th, Tj);
cannam@95 78 {
cannam@95 79 V Tf, TA, Tz, TD;
cannam@95 80 Tf = VSUB(T9, Te);
cannam@95 81 TA = VADD(T9, Te);
cannam@95 82 Tz = VSUB(Tx, Ty);
cannam@95 83 TD = VADD(Tx, Ty);
cannam@95 84 {
cannam@95 85 V TC, TE, Tl, Tt;
cannam@95 86 TC = VSUB(TA, TB);
cannam@95 87 TE = VADD(TA, TB);
cannam@95 88 Tl = VADD(Tf, Tk);
cannam@95 89 Tt = VSUB(Tf, Tk);
cannam@95 90 {
cannam@95 91 V Tu, Tw, Tm, Tv;
cannam@95 92 ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
cannam@95 93 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
cannam@95 94 ST(&(x[WS(rs, 2)]), VFMAI(TC, Tz), ms, &(x[0]));
cannam@95 95 ST(&(x[WS(rs, 6)]), VFNMSI(TC, Tz), ms, &(x[0]));
cannam@95 96 Tu = VFNMS(LDK(KP707106781), Tt, Ts);
cannam@95 97 Tw = VFMA(LDK(KP707106781), Tt, Ts);
cannam@95 98 Tm = VFNMS(LDK(KP707106781), Tl, T7);
cannam@95 99 Tv = VFMA(LDK(KP707106781), Tl, T7);
cannam@95 100 ST(&(x[WS(rs, 1)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
cannam@95 101 ST(&(x[WS(rs, 7)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
cannam@95 102 ST(&(x[WS(rs, 5)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
cannam@95 103 ST(&(x[WS(rs, 3)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
cannam@95 104 }
cannam@95 105 }
cannam@95 106 }
cannam@95 107 }
cannam@95 108 }
cannam@95 109 }
cannam@95 110 }
cannam@95 111 VLEAVE();
cannam@95 112 }
cannam@95 113
cannam@95 114 static const tw_instr twinstr[] = {
cannam@95 115 VTW(0, 1),
cannam@95 116 VTW(0, 3),
cannam@95 117 VTW(0, 7),
cannam@95 118 {TW_NEXT, VL, 0}
cannam@95 119 };
cannam@95 120
cannam@95 121 static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
cannam@95 122
cannam@95 123 void XSIMD(codelet_t3bv_8) (planner *p) {
cannam@95 124 X(kdft_dit_register) (p, t3bv_8, &desc);
cannam@95 125 }
cannam@95 126 #else /* HAVE_FMA */
cannam@95 127
cannam@95 128 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3bv_8 -include t3b.h -sign 1 */
cannam@95 129
cannam@95 130 /*
cannam@95 131 * This function contains 37 FP additions, 24 FP multiplications,
cannam@95 132 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
cannam@95 133 * 31 stack variables, 1 constants, and 16 memory accesses
cannam@95 134 */
cannam@95 135 #include "t3b.h"
cannam@95 136
cannam@95 137 static void t3bv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 138 {
cannam@95 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 140 {
cannam@95 141 INT m;
cannam@95 142 R *x;
cannam@95 143 x = ii;
cannam@95 144 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@95 145 V T1, T4, T5, Tp, T6, T7, Tj;
cannam@95 146 T1 = LDW(&(W[0]));
cannam@95 147 T4 = LDW(&(W[TWVL * 2]));
cannam@95 148 T5 = VZMULJ(T1, T4);
cannam@95 149 Tp = VZMUL(T1, T4);
cannam@95 150 T6 = LDW(&(W[TWVL * 4]));
cannam@95 151 T7 = VZMULJ(T5, T6);
cannam@95 152 Tj = VZMULJ(T1, T6);
cannam@95 153 {
cannam@95 154 V Ts, Tx, Tm, Ty, Ta, TA, Tf, TB, To, Tr, Tq;
cannam@95 155 To = LD(&(x[0]), ms, &(x[0]));
cannam@95 156 Tq = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 157 Tr = VZMUL(Tp, Tq);
cannam@95 158 Ts = VSUB(To, Tr);
cannam@95 159 Tx = VADD(To, Tr);
cannam@95 160 {
cannam@95 161 V Ti, Tl, Th, Tk;
cannam@95 162 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 163 Ti = VZMUL(T5, Th);
cannam@95 164 Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 165 Tl = VZMUL(Tj, Tk);
cannam@95 166 Tm = VSUB(Ti, Tl);
cannam@95 167 Ty = VADD(Ti, Tl);
cannam@95 168 }
cannam@95 169 {
cannam@95 170 V T3, T9, T2, T8;
cannam@95 171 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 172 T3 = VZMUL(T1, T2);
cannam@95 173 T8 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 174 T9 = VZMUL(T7, T8);
cannam@95 175 Ta = VSUB(T3, T9);
cannam@95 176 TA = VADD(T3, T9);
cannam@95 177 }
cannam@95 178 {
cannam@95 179 V Tc, Te, Tb, Td;
cannam@95 180 Tb = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 181 Tc = VZMUL(T6, Tb);
cannam@95 182 Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 183 Te = VZMUL(T4, Td);
cannam@95 184 Tf = VSUB(Tc, Te);
cannam@95 185 TB = VADD(Tc, Te);
cannam@95 186 }
cannam@95 187 {
cannam@95 188 V Tz, TC, TD, TE;
cannam@95 189 Tz = VSUB(Tx, Ty);
cannam@95 190 TC = VBYI(VSUB(TA, TB));
cannam@95 191 ST(&(x[WS(rs, 6)]), VSUB(Tz, TC), ms, &(x[0]));
cannam@95 192 ST(&(x[WS(rs, 2)]), VADD(Tz, TC), ms, &(x[0]));
cannam@95 193 TD = VADD(Tx, Ty);
cannam@95 194 TE = VADD(TA, TB);
cannam@95 195 ST(&(x[WS(rs, 4)]), VSUB(TD, TE), ms, &(x[0]));
cannam@95 196 ST(&(x[0]), VADD(TD, TE), ms, &(x[0]));
cannam@95 197 {
cannam@95 198 V Tn, Tv, Tu, Tw, Tg, Tt;
cannam@95 199 Tg = VMUL(LDK(KP707106781), VSUB(Ta, Tf));
cannam@95 200 Tn = VBYI(VSUB(Tg, Tm));
cannam@95 201 Tv = VBYI(VADD(Tm, Tg));
cannam@95 202 Tt = VMUL(LDK(KP707106781), VADD(Ta, Tf));
cannam@95 203 Tu = VSUB(Ts, Tt);
cannam@95 204 Tw = VADD(Ts, Tt);
cannam@95 205 ST(&(x[WS(rs, 3)]), VADD(Tn, Tu), ms, &(x[WS(rs, 1)]));
cannam@95 206 ST(&(x[WS(rs, 7)]), VSUB(Tw, Tv), ms, &(x[WS(rs, 1)]));
cannam@95 207 ST(&(x[WS(rs, 5)]), VSUB(Tu, Tn), ms, &(x[WS(rs, 1)]));
cannam@95 208 ST(&(x[WS(rs, 1)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
cannam@95 209 }
cannam@95 210 }
cannam@95 211 }
cannam@95 212 }
cannam@95 213 }
cannam@95 214 VLEAVE();
cannam@95 215 }
cannam@95 216
cannam@95 217 static const tw_instr twinstr[] = {
cannam@95 218 VTW(0, 1),
cannam@95 219 VTW(0, 3),
cannam@95 220 VTW(0, 7),
cannam@95 221 {TW_NEXT, VL, 0}
cannam@95 222 };
cannam@95 223
cannam@95 224 static const ct_desc desc = { 8, XSIMD_STRING("t3bv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
cannam@95 225
cannam@95 226 void XSIMD(codelet_t3bv_8) (planner *p) {
cannam@95 227 X(kdft_dit_register) (p, t3bv_8, &desc);
cannam@95 228 }
cannam@95 229 #endif /* HAVE_FMA */