annotate src/fftw-3.3.3/dft/simd/common/t1fv_8.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:38:02 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fv_8 -include t1f.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 33 FP additions, 24 FP multiplications,
cannam@95 32 * (or, 23 additions, 14 multiplications, 10 fused multiply/add),
cannam@95 33 * 36 stack variables, 1 constants, and 16 memory accesses
cannam@95 34 */
cannam@95 35 #include "t1f.h"
cannam@95 36
cannam@95 37 static void t1fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 40 {
cannam@95 41 INT m;
cannam@95 42 R *x;
cannam@95 43 x = ri;
cannam@95 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@95 45 V T1, T2, Th, Tj, T5, T7, Ta, Tc;
cannam@95 46 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 47 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 48 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 49 Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 50 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 51 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 52 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 53 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 54 {
cannam@95 55 V T3, Ti, Tk, T6, T8, Tb, Td;
cannam@95 56 T3 = BYTWJ(&(W[TWVL * 6]), T2);
cannam@95 57 Ti = BYTWJ(&(W[TWVL * 2]), Th);
cannam@95 58 Tk = BYTWJ(&(W[TWVL * 10]), Tj);
cannam@95 59 T6 = BYTWJ(&(W[0]), T5);
cannam@95 60 T8 = BYTWJ(&(W[TWVL * 8]), T7);
cannam@95 61 Tb = BYTWJ(&(W[TWVL * 12]), Ta);
cannam@95 62 Td = BYTWJ(&(W[TWVL * 4]), Tc);
cannam@95 63 {
cannam@95 64 V Tq, T4, Tr, Tl, Tt, T9, Tu, Te, Tw, Ts;
cannam@95 65 Tq = VADD(T1, T3);
cannam@95 66 T4 = VSUB(T1, T3);
cannam@95 67 Tr = VADD(Ti, Tk);
cannam@95 68 Tl = VSUB(Ti, Tk);
cannam@95 69 Tt = VADD(T6, T8);
cannam@95 70 T9 = VSUB(T6, T8);
cannam@95 71 Tu = VADD(Tb, Td);
cannam@95 72 Te = VSUB(Tb, Td);
cannam@95 73 Tw = VSUB(Tq, Tr);
cannam@95 74 Ts = VADD(Tq, Tr);
cannam@95 75 {
cannam@95 76 V Tx, Tv, Tm, Tf;
cannam@95 77 Tx = VSUB(Tu, Tt);
cannam@95 78 Tv = VADD(Tt, Tu);
cannam@95 79 Tm = VSUB(Te, T9);
cannam@95 80 Tf = VADD(T9, Te);
cannam@95 81 {
cannam@95 82 V Tp, Tn, To, Tg;
cannam@95 83 ST(&(x[WS(rs, 2)]), VFMAI(Tx, Tw), ms, &(x[0]));
cannam@95 84 ST(&(x[WS(rs, 6)]), VFNMSI(Tx, Tw), ms, &(x[0]));
cannam@95 85 ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
cannam@95 86 ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
cannam@95 87 Tp = VFMA(LDK(KP707106781), Tm, Tl);
cannam@95 88 Tn = VFNMS(LDK(KP707106781), Tm, Tl);
cannam@95 89 To = VFNMS(LDK(KP707106781), Tf, T4);
cannam@95 90 Tg = VFMA(LDK(KP707106781), Tf, T4);
cannam@95 91 ST(&(x[WS(rs, 5)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
cannam@95 92 ST(&(x[WS(rs, 3)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
cannam@95 93 ST(&(x[WS(rs, 7)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
cannam@95 94 ST(&(x[WS(rs, 1)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
cannam@95 95 }
cannam@95 96 }
cannam@95 97 }
cannam@95 98 }
cannam@95 99 }
cannam@95 100 }
cannam@95 101 VLEAVE();
cannam@95 102 }
cannam@95 103
cannam@95 104 static const tw_instr twinstr[] = {
cannam@95 105 VTW(0, 1),
cannam@95 106 VTW(0, 2),
cannam@95 107 VTW(0, 3),
cannam@95 108 VTW(0, 4),
cannam@95 109 VTW(0, 5),
cannam@95 110 VTW(0, 6),
cannam@95 111 VTW(0, 7),
cannam@95 112 {TW_NEXT, VL, 0}
cannam@95 113 };
cannam@95 114
cannam@95 115 static const ct_desc desc = { 8, XSIMD_STRING("t1fv_8"), twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 };
cannam@95 116
cannam@95 117 void XSIMD(codelet_t1fv_8) (planner *p) {
cannam@95 118 X(kdft_dit_register) (p, t1fv_8, &desc);
cannam@95 119 }
cannam@95 120 #else /* HAVE_FMA */
cannam@95 121
cannam@95 122 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fv_8 -include t1f.h */
cannam@95 123
cannam@95 124 /*
cannam@95 125 * This function contains 33 FP additions, 16 FP multiplications,
cannam@95 126 * (or, 33 additions, 16 multiplications, 0 fused multiply/add),
cannam@95 127 * 24 stack variables, 1 constants, and 16 memory accesses
cannam@95 128 */
cannam@95 129 #include "t1f.h"
cannam@95 130
cannam@95 131 static void t1fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 132 {
cannam@95 133 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 134 {
cannam@95 135 INT m;
cannam@95 136 R *x;
cannam@95 137 x = ri;
cannam@95 138 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@95 139 V T4, Tq, Tm, Tr, T9, Tt, Te, Tu, T1, T3, T2;
cannam@95 140 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 141 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 142 T3 = BYTWJ(&(W[TWVL * 6]), T2);
cannam@95 143 T4 = VSUB(T1, T3);
cannam@95 144 Tq = VADD(T1, T3);
cannam@95 145 {
cannam@95 146 V Tj, Tl, Ti, Tk;
cannam@95 147 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 148 Tj = BYTWJ(&(W[TWVL * 2]), Ti);
cannam@95 149 Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 150 Tl = BYTWJ(&(W[TWVL * 10]), Tk);
cannam@95 151 Tm = VSUB(Tj, Tl);
cannam@95 152 Tr = VADD(Tj, Tl);
cannam@95 153 }
cannam@95 154 {
cannam@95 155 V T6, T8, T5, T7;
cannam@95 156 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 157 T6 = BYTWJ(&(W[0]), T5);
cannam@95 158 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 159 T8 = BYTWJ(&(W[TWVL * 8]), T7);
cannam@95 160 T9 = VSUB(T6, T8);
cannam@95 161 Tt = VADD(T6, T8);
cannam@95 162 }
cannam@95 163 {
cannam@95 164 V Tb, Td, Ta, Tc;
cannam@95 165 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 166 Tb = BYTWJ(&(W[TWVL * 12]), Ta);
cannam@95 167 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 168 Td = BYTWJ(&(W[TWVL * 4]), Tc);
cannam@95 169 Te = VSUB(Tb, Td);
cannam@95 170 Tu = VADD(Tb, Td);
cannam@95 171 }
cannam@95 172 {
cannam@95 173 V Ts, Tv, Tw, Tx;
cannam@95 174 Ts = VADD(Tq, Tr);
cannam@95 175 Tv = VADD(Tt, Tu);
cannam@95 176 ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
cannam@95 177 ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
cannam@95 178 Tw = VSUB(Tq, Tr);
cannam@95 179 Tx = VBYI(VSUB(Tu, Tt));
cannam@95 180 ST(&(x[WS(rs, 6)]), VSUB(Tw, Tx), ms, &(x[0]));
cannam@95 181 ST(&(x[WS(rs, 2)]), VADD(Tw, Tx), ms, &(x[0]));
cannam@95 182 {
cannam@95 183 V Tg, To, Tn, Tp, Tf, Th;
cannam@95 184 Tf = VMUL(LDK(KP707106781), VADD(T9, Te));
cannam@95 185 Tg = VADD(T4, Tf);
cannam@95 186 To = VSUB(T4, Tf);
cannam@95 187 Th = VMUL(LDK(KP707106781), VSUB(Te, T9));
cannam@95 188 Tn = VBYI(VSUB(Th, Tm));
cannam@95 189 Tp = VBYI(VADD(Tm, Th));
cannam@95 190 ST(&(x[WS(rs, 7)]), VSUB(Tg, Tn), ms, &(x[WS(rs, 1)]));
cannam@95 191 ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
cannam@95 192 ST(&(x[WS(rs, 1)]), VADD(Tg, Tn), ms, &(x[WS(rs, 1)]));
cannam@95 193 ST(&(x[WS(rs, 5)]), VSUB(To, Tp), ms, &(x[WS(rs, 1)]));
cannam@95 194 }
cannam@95 195 }
cannam@95 196 }
cannam@95 197 }
cannam@95 198 VLEAVE();
cannam@95 199 }
cannam@95 200
cannam@95 201 static const tw_instr twinstr[] = {
cannam@95 202 VTW(0, 1),
cannam@95 203 VTW(0, 2),
cannam@95 204 VTW(0, 3),
cannam@95 205 VTW(0, 4),
cannam@95 206 VTW(0, 5),
cannam@95 207 VTW(0, 6),
cannam@95 208 VTW(0, 7),
cannam@95 209 {TW_NEXT, VL, 0}
cannam@95 210 };
cannam@95 211
cannam@95 212 static const ct_desc desc = { 8, XSIMD_STRING("t1fv_8"), twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 };
cannam@95 213
cannam@95 214 void XSIMD(codelet_t1fv_8) (planner *p) {
cannam@95 215 X(kdft_dit_register) (p, t1fv_8, &desc);
cannam@95 216 }
cannam@95 217 #endif /* HAVE_FMA */