annotate src/fftw-3.3.3/dft/rank-geq2.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21
cannam@95 22 /* plans for DFT of rank >= 2 (multidimensional) */
cannam@95 23
cannam@95 24 #include "dft.h"
cannam@95 25
cannam@95 26 typedef struct {
cannam@95 27 solver super;
cannam@95 28 int spltrnk;
cannam@95 29 const int *buddies;
cannam@95 30 int nbuddies;
cannam@95 31 } S;
cannam@95 32
cannam@95 33 typedef struct {
cannam@95 34 plan_dft super;
cannam@95 35
cannam@95 36 plan *cld1, *cld2;
cannam@95 37 const S *solver;
cannam@95 38 } P;
cannam@95 39
cannam@95 40 /* Compute multi-dimensional DFT by applying the two cld plans
cannam@95 41 (lower-rnk DFTs). */
cannam@95 42 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@95 43 {
cannam@95 44 const P *ego = (const P *) ego_;
cannam@95 45 plan_dft *cld1, *cld2;
cannam@95 46
cannam@95 47 cld1 = (plan_dft *) ego->cld1;
cannam@95 48 cld1->apply(ego->cld1, ri, ii, ro, io);
cannam@95 49
cannam@95 50 cld2 = (plan_dft *) ego->cld2;
cannam@95 51 cld2->apply(ego->cld2, ro, io, ro, io);
cannam@95 52 }
cannam@95 53
cannam@95 54
cannam@95 55 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@95 56 {
cannam@95 57 P *ego = (P *) ego_;
cannam@95 58 X(plan_awake)(ego->cld1, wakefulness);
cannam@95 59 X(plan_awake)(ego->cld2, wakefulness);
cannam@95 60 }
cannam@95 61
cannam@95 62 static void destroy(plan *ego_)
cannam@95 63 {
cannam@95 64 P *ego = (P *) ego_;
cannam@95 65 X(plan_destroy_internal)(ego->cld2);
cannam@95 66 X(plan_destroy_internal)(ego->cld1);
cannam@95 67 }
cannam@95 68
cannam@95 69 static void print(const plan *ego_, printer *p)
cannam@95 70 {
cannam@95 71 const P *ego = (const P *) ego_;
cannam@95 72 const S *s = ego->solver;
cannam@95 73 p->print(p, "(dft-rank>=2/%d%(%p%)%(%p%))",
cannam@95 74 s->spltrnk, ego->cld1, ego->cld2);
cannam@95 75 }
cannam@95 76
cannam@95 77 static int picksplit(const S *ego, const tensor *sz, int *rp)
cannam@95 78 {
cannam@95 79 A(sz->rnk > 1); /* cannot split rnk <= 1 */
cannam@95 80 if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp))
cannam@95 81 return 0;
cannam@95 82 *rp += 1; /* convert from dim. index to rank */
cannam@95 83 if (*rp >= sz->rnk) /* split must reduce rank */
cannam@95 84 return 0;
cannam@95 85 return 1;
cannam@95 86 }
cannam@95 87
cannam@95 88 static int applicable0(const solver *ego_, const problem *p_, int *rp)
cannam@95 89 {
cannam@95 90 const problem_dft *p = (const problem_dft *) p_;
cannam@95 91 const S *ego = (const S *)ego_;
cannam@95 92 return (1
cannam@95 93 && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk)
cannam@95 94 && p->sz->rnk >= 2
cannam@95 95 && picksplit(ego, p->sz, rp)
cannam@95 96 );
cannam@95 97 }
cannam@95 98
cannam@95 99 /* TODO: revise this. */
cannam@95 100 static int applicable(const solver *ego_, const problem *p_,
cannam@95 101 const planner *plnr, int *rp)
cannam@95 102 {
cannam@95 103 const S *ego = (const S *)ego_;
cannam@95 104 const problem_dft *p = (const problem_dft *) p_;
cannam@95 105
cannam@95 106 if (!applicable0(ego_, p_, rp)) return 0;
cannam@95 107
cannam@95 108 if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) return 0;
cannam@95 109
cannam@95 110 /* Heuristic: if the vector stride is greater than the transform
cannam@95 111 sz, don't use (prefer to do the vector loop first with a
cannam@95 112 vrank-geq1 plan). */
cannam@95 113 if (NO_UGLYP(plnr))
cannam@95 114 if (p->vecsz->rnk > 0 &&
cannam@95 115 X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz))
cannam@95 116 return 0;
cannam@95 117
cannam@95 118 return 1;
cannam@95 119 }
cannam@95 120
cannam@95 121 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 122 {
cannam@95 123 const S *ego = (const S *) ego_;
cannam@95 124 const problem_dft *p;
cannam@95 125 P *pln;
cannam@95 126 plan *cld1 = 0, *cld2 = 0;
cannam@95 127 tensor *sz1, *sz2, *vecszi, *sz2i;
cannam@95 128 int spltrnk;
cannam@95 129
cannam@95 130 static const plan_adt padt = {
cannam@95 131 X(dft_solve), awake, print, destroy
cannam@95 132 };
cannam@95 133
cannam@95 134 if (!applicable(ego_, p_, plnr, &spltrnk))
cannam@95 135 return (plan *) 0;
cannam@95 136
cannam@95 137 p = (const problem_dft *) p_;
cannam@95 138 X(tensor_split)(p->sz, &sz1, spltrnk, &sz2);
cannam@95 139 vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS);
cannam@95 140 sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS);
cannam@95 141
cannam@95 142 cld1 = X(mkplan_d)(plnr,
cannam@95 143 X(mkproblem_dft_d)(X(tensor_copy)(sz2),
cannam@95 144 X(tensor_append)(p->vecsz, sz1),
cannam@95 145 p->ri, p->ii, p->ro, p->io));
cannam@95 146 if (!cld1) goto nada;
cannam@95 147
cannam@95 148 cld2 = X(mkplan_d)(plnr,
cannam@95 149 X(mkproblem_dft_d)(
cannam@95 150 X(tensor_copy_inplace)(sz1, INPLACE_OS),
cannam@95 151 X(tensor_append)(vecszi, sz2i),
cannam@95 152 p->ro, p->io, p->ro, p->io));
cannam@95 153 if (!cld2) goto nada;
cannam@95 154
cannam@95 155 pln = MKPLAN_DFT(P, &padt, apply);
cannam@95 156
cannam@95 157 pln->cld1 = cld1;
cannam@95 158 pln->cld2 = cld2;
cannam@95 159
cannam@95 160 pln->solver = ego;
cannam@95 161 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
cannam@95 162
cannam@95 163 X(tensor_destroy4)(sz1, sz2, vecszi, sz2i);
cannam@95 164
cannam@95 165 return &(pln->super.super);
cannam@95 166
cannam@95 167 nada:
cannam@95 168 X(plan_destroy_internal)(cld2);
cannam@95 169 X(plan_destroy_internal)(cld1);
cannam@95 170 X(tensor_destroy4)(sz1, sz2, vecszi, sz2i);
cannam@95 171 return (plan *) 0;
cannam@95 172 }
cannam@95 173
cannam@95 174 static solver *mksolver(int spltrnk, const int *buddies, int nbuddies)
cannam@95 175 {
cannam@95 176 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
cannam@95 177 S *slv = MKSOLVER(S, &sadt);
cannam@95 178 slv->spltrnk = spltrnk;
cannam@95 179 slv->buddies = buddies;
cannam@95 180 slv->nbuddies = nbuddies;
cannam@95 181 return &(slv->super);
cannam@95 182 }
cannam@95 183
cannam@95 184 void X(dft_rank_geq2_register)(planner *p)
cannam@95 185 {
cannam@95 186 int i;
cannam@95 187 static const int buddies[] = { 1, 0, -2 };
cannam@95 188
cannam@95 189 const int nbuddies = (int)(sizeof(buddies) / sizeof(buddies[0]));
cannam@95 190
cannam@95 191 for (i = 0; i < nbuddies; ++i)
cannam@95 192 REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies));
cannam@95 193
cannam@95 194 /* FIXME:
cannam@95 195
cannam@95 196 Should we try more buddies?
cannam@95 197
cannam@95 198 Another possible variant is to swap cld1 and cld2 (or rather,
cannam@95 199 to swap their problems; they are not interchangeable because
cannam@95 200 cld2 must be in-place). In past versions of FFTW, however, I
cannam@95 201 seem to recall that such rearrangements have made little or no
cannam@95 202 difference.
cannam@95 203 */
cannam@95 204 }