annotate src/fftw-3.3.3/dft/direct.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21
cannam@95 22 /* direct DFT solver, if we have a codelet */
cannam@95 23
cannam@95 24 #include "dft.h"
cannam@95 25
cannam@95 26 typedef struct {
cannam@95 27 solver super;
cannam@95 28 const kdft_desc *desc;
cannam@95 29 kdft k;
cannam@95 30 int bufferedp;
cannam@95 31 } S;
cannam@95 32
cannam@95 33 typedef struct {
cannam@95 34 plan_dft super;
cannam@95 35
cannam@95 36 stride is, os, bufstride;
cannam@95 37 INT n, vl, ivs, ovs;
cannam@95 38 kdft k;
cannam@95 39 const S *slv;
cannam@95 40 } P;
cannam@95 41
cannam@95 42 static void dobatch(const P *ego, R *ri, R *ii, R *ro, R *io,
cannam@95 43 R *buf, INT batchsz)
cannam@95 44 {
cannam@95 45 X(cpy2d_pair_ci)(ri, ii, buf, buf+1,
cannam@95 46 ego->n, WS(ego->is, 1), WS(ego->bufstride, 1),
cannam@95 47 batchsz, ego->ivs, 2);
cannam@95 48
cannam@95 49 if (IABS(WS(ego->os, 1)) < IABS(ego->ovs)) {
cannam@95 50 /* transform directly to output */
cannam@95 51 ego->k(buf, buf+1, ro, io,
cannam@95 52 ego->bufstride, ego->os, batchsz, 2, ego->ovs);
cannam@95 53 } else {
cannam@95 54 /* transform to buffer and copy back */
cannam@95 55 ego->k(buf, buf+1, buf, buf+1,
cannam@95 56 ego->bufstride, ego->bufstride, batchsz, 2, 2);
cannam@95 57 X(cpy2d_pair_co)(buf, buf+1, ro, io,
cannam@95 58 ego->n, WS(ego->bufstride, 1), WS(ego->os, 1),
cannam@95 59 batchsz, 2, ego->ovs);
cannam@95 60 }
cannam@95 61 }
cannam@95 62
cannam@95 63 static INT compute_batchsize(INT n)
cannam@95 64 {
cannam@95 65 /* round up to multiple of 4 */
cannam@95 66 n += 3;
cannam@95 67 n &= -4;
cannam@95 68
cannam@95 69 return (n + 2);
cannam@95 70 }
cannam@95 71
cannam@95 72 static void apply_buf(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@95 73 {
cannam@95 74 const P *ego = (const P *) ego_;
cannam@95 75 R *buf;
cannam@95 76 INT vl = ego->vl, n = ego->n, batchsz = compute_batchsize(n);
cannam@95 77 INT i;
cannam@95 78 size_t bufsz = n * batchsz * 2 * sizeof(R);
cannam@95 79
cannam@95 80 BUF_ALLOC(R *, buf, bufsz);
cannam@95 81
cannam@95 82 for (i = 0; i < vl - batchsz; i += batchsz) {
cannam@95 83 dobatch(ego, ri, ii, ro, io, buf, batchsz);
cannam@95 84 ri += batchsz * ego->ivs; ii += batchsz * ego->ivs;
cannam@95 85 ro += batchsz * ego->ovs; io += batchsz * ego->ovs;
cannam@95 86 }
cannam@95 87 dobatch(ego, ri, ii, ro, io, buf, vl - i);
cannam@95 88
cannam@95 89 BUF_FREE(buf, bufsz);
cannam@95 90 }
cannam@95 91
cannam@95 92 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@95 93 {
cannam@95 94 const P *ego = (const P *) ego_;
cannam@95 95 ASSERT_ALIGNED_DOUBLE;
cannam@95 96 ego->k(ri, ii, ro, io, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs);
cannam@95 97 }
cannam@95 98
cannam@95 99 static void apply_extra_iter(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@95 100 {
cannam@95 101 const P *ego = (const P *) ego_;
cannam@95 102 INT vl = ego->vl;
cannam@95 103
cannam@95 104 ASSERT_ALIGNED_DOUBLE;
cannam@95 105
cannam@95 106 /* for 4-way SIMD when VL is odd: iterate over an
cannam@95 107 even vector length VL, and then execute the last
cannam@95 108 iteration as a 2-vector with vector stride 0. */
cannam@95 109 ego->k(ri, ii, ro, io, ego->is, ego->os, vl - 1, ego->ivs, ego->ovs);
cannam@95 110
cannam@95 111 ego->k(ri + (vl - 1) * ego->ivs, ii + (vl - 1) * ego->ivs,
cannam@95 112 ro + (vl - 1) * ego->ovs, io + (vl - 1) * ego->ovs,
cannam@95 113 ego->is, ego->os, 1, 0, 0);
cannam@95 114 }
cannam@95 115
cannam@95 116 static void destroy(plan *ego_)
cannam@95 117 {
cannam@95 118 P *ego = (P *) ego_;
cannam@95 119 X(stride_destroy)(ego->is);
cannam@95 120 X(stride_destroy)(ego->os);
cannam@95 121 X(stride_destroy)(ego->bufstride);
cannam@95 122 }
cannam@95 123
cannam@95 124 static void print(const plan *ego_, printer *p)
cannam@95 125 {
cannam@95 126 const P *ego = (const P *) ego_;
cannam@95 127 const S *s = ego->slv;
cannam@95 128 const kdft_desc *d = s->desc;
cannam@95 129
cannam@95 130 if (ego->slv->bufferedp)
cannam@95 131 p->print(p, "(dft-directbuf/%D-%D%v \"%s\")",
cannam@95 132 compute_batchsize(d->sz), d->sz, ego->vl, d->nam);
cannam@95 133 else
cannam@95 134 p->print(p, "(dft-direct-%D%v \"%s\")", d->sz, ego->vl, d->nam);
cannam@95 135 }
cannam@95 136
cannam@95 137 static int applicable_buf(const solver *ego_, const problem *p_,
cannam@95 138 const planner *plnr)
cannam@95 139 {
cannam@95 140 const S *ego = (const S *) ego_;
cannam@95 141 const problem_dft *p = (const problem_dft *) p_;
cannam@95 142 const kdft_desc *d = ego->desc;
cannam@95 143 INT vl;
cannam@95 144 INT ivs, ovs;
cannam@95 145 INT batchsz;
cannam@95 146
cannam@95 147 return (
cannam@95 148 1
cannam@95 149 && p->sz->rnk == 1
cannam@95 150 && p->vecsz->rnk == 1
cannam@95 151 && p->sz->dims[0].n == d->sz
cannam@95 152
cannam@95 153 /* check strides etc */
cannam@95 154 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@95 155
cannam@95 156 /* UGLY if IS <= IVS */
cannam@95 157 && !(NO_UGLYP(plnr) &&
cannam@95 158 X(iabs)(p->sz->dims[0].is) <= X(iabs)(ivs))
cannam@95 159
cannam@95 160 && (batchsz = compute_batchsize(d->sz), 1)
cannam@95 161 && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io,
cannam@95 162 2 * batchsz, p->sz->dims[0].os,
cannam@95 163 batchsz, 2, ovs, plnr))
cannam@95 164 && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io,
cannam@95 165 2 * batchsz, p->sz->dims[0].os,
cannam@95 166 vl % batchsz, 2, ovs, plnr))
cannam@95 167
cannam@95 168
cannam@95 169 && (0
cannam@95 170 /* can operate out-of-place */
cannam@95 171 || p->ri != p->ro
cannam@95 172
cannam@95 173 /* can operate in-place as long as strides are the same */
cannam@95 174 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@95 175
cannam@95 176 /* can do it if the problem fits in the buffer, no matter
cannam@95 177 what the strides are */
cannam@95 178 || vl <= batchsz
cannam@95 179 )
cannam@95 180 );
cannam@95 181 }
cannam@95 182
cannam@95 183 static int applicable(const solver *ego_, const problem *p_,
cannam@95 184 const planner *plnr, int *extra_iterp)
cannam@95 185 {
cannam@95 186 const S *ego = (const S *) ego_;
cannam@95 187 const problem_dft *p = (const problem_dft *) p_;
cannam@95 188 const kdft_desc *d = ego->desc;
cannam@95 189 INT vl;
cannam@95 190 INT ivs, ovs;
cannam@95 191
cannam@95 192 return (
cannam@95 193 1
cannam@95 194 && p->sz->rnk == 1
cannam@95 195 && p->vecsz->rnk <= 1
cannam@95 196 && p->sz->dims[0].n == d->sz
cannam@95 197
cannam@95 198 /* check strides etc */
cannam@95 199 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
cannam@95 200
cannam@95 201 && ((*extra_iterp = 0,
cannam@95 202 (d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
cannam@95 203 p->sz->dims[0].is, p->sz->dims[0].os,
cannam@95 204 vl, ivs, ovs, plnr)))
cannam@95 205 ||
cannam@95 206 (*extra_iterp = 1,
cannam@95 207 ((d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
cannam@95 208 p->sz->dims[0].is, p->sz->dims[0].os,
cannam@95 209 vl - 1, ivs, ovs, plnr))
cannam@95 210 &&
cannam@95 211 (d->genus->okp(d, p->ri, p->ii, p->ro, p->io,
cannam@95 212 p->sz->dims[0].is, p->sz->dims[0].os,
cannam@95 213 2, 0, 0, plnr)))))
cannam@95 214
cannam@95 215 && (0
cannam@95 216 /* can operate out-of-place */
cannam@95 217 || p->ri != p->ro
cannam@95 218
cannam@95 219 /* can always compute one transform */
cannam@95 220 || vl == 1
cannam@95 221
cannam@95 222 /* can operate in-place as long as strides are the same */
cannam@95 223 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
cannam@95 224 )
cannam@95 225 );
cannam@95 226 }
cannam@95 227
cannam@95 228
cannam@95 229 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 230 {
cannam@95 231 const S *ego = (const S *) ego_;
cannam@95 232 P *pln;
cannam@95 233 const problem_dft *p;
cannam@95 234 iodim *d;
cannam@95 235 const kdft_desc *e = ego->desc;
cannam@95 236
cannam@95 237 static const plan_adt padt = {
cannam@95 238 X(dft_solve), X(null_awake), print, destroy
cannam@95 239 };
cannam@95 240
cannam@95 241 UNUSED(plnr);
cannam@95 242
cannam@95 243 if (ego->bufferedp) {
cannam@95 244 if (!applicable_buf(ego_, p_, plnr))
cannam@95 245 return (plan *)0;
cannam@95 246 pln = MKPLAN_DFT(P, &padt, apply_buf);
cannam@95 247 } else {
cannam@95 248 int extra_iterp = 0;
cannam@95 249 if (!applicable(ego_, p_, plnr, &extra_iterp))
cannam@95 250 return (plan *)0;
cannam@95 251 pln = MKPLAN_DFT(P, &padt, extra_iterp ? apply_extra_iter : apply);
cannam@95 252 }
cannam@95 253
cannam@95 254 p = (const problem_dft *) p_;
cannam@95 255 d = p->sz->dims;
cannam@95 256 pln->k = ego->k;
cannam@95 257 pln->n = d[0].n;
cannam@95 258 pln->is = X(mkstride)(pln->n, d[0].is);
cannam@95 259 pln->os = X(mkstride)(pln->n, d[0].os);
cannam@95 260 pln->bufstride = X(mkstride)(pln->n, 2 * compute_batchsize(pln->n));
cannam@95 261
cannam@95 262 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
cannam@95 263 pln->slv = ego;
cannam@95 264
cannam@95 265 X(ops_zero)(&pln->super.super.ops);
cannam@95 266 X(ops_madd2)(pln->vl / e->genus->vl, &e->ops, &pln->super.super.ops);
cannam@95 267
cannam@95 268 if (ego->bufferedp)
cannam@95 269 pln->super.super.ops.other += 4 * pln->n * pln->vl;
cannam@95 270
cannam@95 271 pln->super.super.could_prune_now_p = !ego->bufferedp;
cannam@95 272 return &(pln->super.super);
cannam@95 273 }
cannam@95 274
cannam@95 275 static solver *mksolver(kdft k, const kdft_desc *desc, int bufferedp)
cannam@95 276 {
cannam@95 277 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
cannam@95 278 S *slv = MKSOLVER(S, &sadt);
cannam@95 279 slv->k = k;
cannam@95 280 slv->desc = desc;
cannam@95 281 slv->bufferedp = bufferedp;
cannam@95 282 return &(slv->super);
cannam@95 283 }
cannam@95 284
cannam@95 285 solver *X(mksolver_dft_direct)(kdft k, const kdft_desc *desc)
cannam@95 286 {
cannam@95 287 return mksolver(k, desc, 0);
cannam@95 288 }
cannam@95 289
cannam@95 290 solver *X(mksolver_dft_directbuf)(kdft k, const kdft_desc *desc)
cannam@95 291 {
cannam@95 292 return mksolver(k, desc, 1);
cannam@95 293 }