annotate src/fftw-3.3.3/dft/bluestein.c @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 89f5e221ed7b
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 #include "dft.h"
cannam@95 22
cannam@95 23 typedef struct {
cannam@95 24 solver super;
cannam@95 25 } S;
cannam@95 26
cannam@95 27 typedef struct {
cannam@95 28 plan_dft super;
cannam@95 29 INT n; /* problem size */
cannam@95 30 INT nb; /* size of convolution */
cannam@95 31 R *w; /* lambda k . exp(2*pi*i*k^2/(2*n)) */
cannam@95 32 R *W; /* DFT(w) */
cannam@95 33 plan *cldf;
cannam@95 34 INT is, os;
cannam@95 35 } P;
cannam@95 36
cannam@95 37 static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w)
cannam@95 38 {
cannam@95 39 INT k, ksq, n2 = 2 * n;
cannam@95 40 triggen *t = X(mktriggen)(wakefulness, n2);
cannam@95 41
cannam@95 42 ksq = 0;
cannam@95 43 for (k = 0; k < n; ++k) {
cannam@95 44 t->cexp(t, ksq, w+2*k);
cannam@95 45 /* careful with overflow */
cannam@95 46 ksq += 2*k + 1; while (ksq > n2) ksq -= n2;
cannam@95 47 }
cannam@95 48
cannam@95 49 X(triggen_destroy)(t);
cannam@95 50 }
cannam@95 51
cannam@95 52 static void mktwiddle(enum wakefulness wakefulness, P *p)
cannam@95 53 {
cannam@95 54 INT i;
cannam@95 55 INT n = p->n, nb = p->nb;
cannam@95 56 R *w, *W;
cannam@95 57 E nbf = (E)nb;
cannam@95 58
cannam@95 59 p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES);
cannam@95 60 p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES);
cannam@95 61
cannam@95 62 bluestein_sequence(wakefulness, n, w);
cannam@95 63
cannam@95 64 for (i = 0; i < nb; ++i)
cannam@95 65 W[2*i] = W[2*i+1] = K(0.0);
cannam@95 66
cannam@95 67 W[0] = w[0] / nbf;
cannam@95 68 W[1] = w[1] / nbf;
cannam@95 69
cannam@95 70 for (i = 1; i < n; ++i) {
cannam@95 71 W[2*i] = W[2*(nb-i)] = w[2*i] / nbf;
cannam@95 72 W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf;
cannam@95 73 }
cannam@95 74
cannam@95 75 {
cannam@95 76 plan_dft *cldf = (plan_dft *)p->cldf;
cannam@95 77 /* cldf must be awake */
cannam@95 78 cldf->apply(p->cldf, W, W+1, W, W+1);
cannam@95 79 }
cannam@95 80 }
cannam@95 81
cannam@95 82 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@95 83 {
cannam@95 84 const P *ego = (const P *) ego_;
cannam@95 85 INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os;
cannam@95 86 R *w = ego->w, *W = ego->W;
cannam@95 87 R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
cannam@95 88
cannam@95 89 /* multiply input by conjugate bluestein sequence */
cannam@95 90 for (i = 0; i < n; ++i) {
cannam@95 91 E xr = ri[i*is], xi = ii[i*is];
cannam@95 92 E wr = w[2*i], wi = w[2*i+1];
cannam@95 93 b[2*i] = xr * wr + xi * wi;
cannam@95 94 b[2*i+1] = xi * wr - xr * wi;
cannam@95 95 }
cannam@95 96
cannam@95 97 for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0);
cannam@95 98
cannam@95 99 /* convolution: FFT */
cannam@95 100 {
cannam@95 101 plan_dft *cldf = (plan_dft *)ego->cldf;
cannam@95 102 cldf->apply(ego->cldf, b, b+1, b, b+1);
cannam@95 103 }
cannam@95 104
cannam@95 105 /* convolution: pointwise multiplication */
cannam@95 106 for (i = 0; i < nb; ++i) {
cannam@95 107 E xr = b[2*i], xi = b[2*i+1];
cannam@95 108 E wr = W[2*i], wi = W[2*i+1];
cannam@95 109 b[2*i] = xi * wr + xr * wi;
cannam@95 110 b[2*i+1] = xr * wr - xi * wi;
cannam@95 111 }
cannam@95 112
cannam@95 113 /* convolution: IFFT by FFT with real/imag input/output swapped */
cannam@95 114 {
cannam@95 115 plan_dft *cldf = (plan_dft *)ego->cldf;
cannam@95 116 cldf->apply(ego->cldf, b, b+1, b, b+1);
cannam@95 117 }
cannam@95 118
cannam@95 119 /* multiply output by conjugate bluestein sequence */
cannam@95 120 for (i = 0; i < n; ++i) {
cannam@95 121 E xi = b[2*i], xr = b[2*i+1];
cannam@95 122 E wr = w[2*i], wi = w[2*i+1];
cannam@95 123 ro[i*os] = xr * wr + xi * wi;
cannam@95 124 io[i*os] = xi * wr - xr * wi;
cannam@95 125 }
cannam@95 126
cannam@95 127 X(ifree)(b);
cannam@95 128 }
cannam@95 129
cannam@95 130 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@95 131 {
cannam@95 132 P *ego = (P *) ego_;
cannam@95 133
cannam@95 134 X(plan_awake)(ego->cldf, wakefulness);
cannam@95 135
cannam@95 136 switch (wakefulness) {
cannam@95 137 case SLEEPY:
cannam@95 138 X(ifree0)(ego->w); ego->w = 0;
cannam@95 139 X(ifree0)(ego->W); ego->W = 0;
cannam@95 140 break;
cannam@95 141 default:
cannam@95 142 A(!ego->w);
cannam@95 143 mktwiddle(wakefulness, ego);
cannam@95 144 break;
cannam@95 145 }
cannam@95 146 }
cannam@95 147
cannam@95 148 static int applicable(const solver *ego, const problem *p_,
cannam@95 149 const planner *plnr)
cannam@95 150 {
cannam@95 151 const problem_dft *p = (const problem_dft *) p_;
cannam@95 152 UNUSED(ego);
cannam@95 153 return (1
cannam@95 154 && p->sz->rnk == 1
cannam@95 155 && p->vecsz->rnk == 0
cannam@95 156 /* FIXME: allow other sizes */
cannam@95 157 && X(is_prime)(p->sz->dims[0].n)
cannam@95 158
cannam@95 159 /* FIXME: avoid infinite recursion of bluestein with itself.
cannam@95 160 This works because all factors in child problems are 2, 3, 5 */
cannam@95 161 && p->sz->dims[0].n > 16
cannam@95 162
cannam@95 163 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW)
cannam@95 164 );
cannam@95 165 }
cannam@95 166
cannam@95 167 static void destroy(plan *ego_)
cannam@95 168 {
cannam@95 169 P *ego = (P *) ego_;
cannam@95 170 X(plan_destroy_internal)(ego->cldf);
cannam@95 171 }
cannam@95 172
cannam@95 173 static void print(const plan *ego_, printer *p)
cannam@95 174 {
cannam@95 175 const P *ego = (const P *)ego_;
cannam@95 176 p->print(p, "(dft-bluestein-%D/%D%(%p%))",
cannam@95 177 ego->n, ego->nb, ego->cldf);
cannam@95 178 }
cannam@95 179
cannam@95 180 static INT choose_transform_size(INT minsz)
cannam@95 181 {
cannam@95 182 while (!X(factors_into_small_primes)(minsz))
cannam@95 183 ++minsz;
cannam@95 184 return minsz;
cannam@95 185 }
cannam@95 186
cannam@95 187 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
cannam@95 188 {
cannam@95 189 const problem_dft *p = (const problem_dft *) p_;
cannam@95 190 P *pln;
cannam@95 191 INT n, nb;
cannam@95 192 plan *cldf = 0;
cannam@95 193 R *buf = (R *) 0;
cannam@95 194
cannam@95 195 static const plan_adt padt = {
cannam@95 196 X(dft_solve), awake, print, destroy
cannam@95 197 };
cannam@95 198
cannam@95 199 if (!applicable(ego, p_, plnr))
cannam@95 200 return (plan *) 0;
cannam@95 201
cannam@95 202 n = p->sz->dims[0].n;
cannam@95 203 nb = choose_transform_size(2 * n - 1);
cannam@95 204 buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
cannam@95 205
cannam@95 206 cldf = X(mkplan_f_d)(plnr,
cannam@95 207 X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2),
cannam@95 208 X(mktensor_1d)(1, 0, 0),
cannam@95 209 buf, buf+1,
cannam@95 210 buf, buf+1),
cannam@95 211 NO_SLOW, 0, 0);
cannam@95 212 if (!cldf) goto nada;
cannam@95 213
cannam@95 214 X(ifree)(buf);
cannam@95 215
cannam@95 216 pln = MKPLAN_DFT(P, &padt, apply);
cannam@95 217
cannam@95 218 pln->n = n;
cannam@95 219 pln->nb = nb;
cannam@95 220 pln->w = 0;
cannam@95 221 pln->W = 0;
cannam@95 222 pln->cldf = cldf;
cannam@95 223 pln->is = p->sz->dims[0].is;
cannam@95 224 pln->os = p->sz->dims[0].os;
cannam@95 225
cannam@95 226 X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops);
cannam@95 227 pln->super.super.ops.add += 4 * n + 2 * nb;
cannam@95 228 pln->super.super.ops.mul += 8 * n + 4 * nb;
cannam@95 229 pln->super.super.ops.other += 6 * (n + nb);
cannam@95 230
cannam@95 231 return &(pln->super.super);
cannam@95 232
cannam@95 233 nada:
cannam@95 234 X(ifree0)(buf);
cannam@95 235 X(plan_destroy_internal)(cldf);
cannam@95 236 return (plan *)0;
cannam@95 237 }
cannam@95 238
cannam@95 239
cannam@95 240 static solver *mksolver(void)
cannam@95 241 {
cannam@95 242 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
cannam@95 243 S *slv = MKSOLVER(S, &sadt);
cannam@95 244 return &(slv->super);
cannam@95 245 }
cannam@95 246
cannam@95 247 void X(dft_bluestein_register)(planner *p)
cannam@95 248 {
cannam@95 249 REGISTER_SOLVER(p, mksolver());
cannam@95 250 }