cannam@95
|
1 /*
|
cannam@95
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
cannam@95
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
cannam@95
|
4 *
|
cannam@95
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@95
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@95
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@95
|
8 * (at your option) any later version.
|
cannam@95
|
9 *
|
cannam@95
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@95
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@95
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@95
|
13 * GNU General Public License for more details.
|
cannam@95
|
14 *
|
cannam@95
|
15 * You should have received a copy of the GNU General Public License
|
cannam@95
|
16 * along with this program; if not, write to the Free Software
|
cannam@95
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@95
|
18 *
|
cannam@95
|
19 */
|
cannam@95
|
20
|
cannam@95
|
21 #include "dft.h"
|
cannam@95
|
22
|
cannam@95
|
23 typedef struct {
|
cannam@95
|
24 solver super;
|
cannam@95
|
25 } S;
|
cannam@95
|
26
|
cannam@95
|
27 typedef struct {
|
cannam@95
|
28 plan_dft super;
|
cannam@95
|
29 INT n; /* problem size */
|
cannam@95
|
30 INT nb; /* size of convolution */
|
cannam@95
|
31 R *w; /* lambda k . exp(2*pi*i*k^2/(2*n)) */
|
cannam@95
|
32 R *W; /* DFT(w) */
|
cannam@95
|
33 plan *cldf;
|
cannam@95
|
34 INT is, os;
|
cannam@95
|
35 } P;
|
cannam@95
|
36
|
cannam@95
|
37 static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w)
|
cannam@95
|
38 {
|
cannam@95
|
39 INT k, ksq, n2 = 2 * n;
|
cannam@95
|
40 triggen *t = X(mktriggen)(wakefulness, n2);
|
cannam@95
|
41
|
cannam@95
|
42 ksq = 0;
|
cannam@95
|
43 for (k = 0; k < n; ++k) {
|
cannam@95
|
44 t->cexp(t, ksq, w+2*k);
|
cannam@95
|
45 /* careful with overflow */
|
cannam@95
|
46 ksq += 2*k + 1; while (ksq > n2) ksq -= n2;
|
cannam@95
|
47 }
|
cannam@95
|
48
|
cannam@95
|
49 X(triggen_destroy)(t);
|
cannam@95
|
50 }
|
cannam@95
|
51
|
cannam@95
|
52 static void mktwiddle(enum wakefulness wakefulness, P *p)
|
cannam@95
|
53 {
|
cannam@95
|
54 INT i;
|
cannam@95
|
55 INT n = p->n, nb = p->nb;
|
cannam@95
|
56 R *w, *W;
|
cannam@95
|
57 E nbf = (E)nb;
|
cannam@95
|
58
|
cannam@95
|
59 p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES);
|
cannam@95
|
60 p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES);
|
cannam@95
|
61
|
cannam@95
|
62 bluestein_sequence(wakefulness, n, w);
|
cannam@95
|
63
|
cannam@95
|
64 for (i = 0; i < nb; ++i)
|
cannam@95
|
65 W[2*i] = W[2*i+1] = K(0.0);
|
cannam@95
|
66
|
cannam@95
|
67 W[0] = w[0] / nbf;
|
cannam@95
|
68 W[1] = w[1] / nbf;
|
cannam@95
|
69
|
cannam@95
|
70 for (i = 1; i < n; ++i) {
|
cannam@95
|
71 W[2*i] = W[2*(nb-i)] = w[2*i] / nbf;
|
cannam@95
|
72 W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf;
|
cannam@95
|
73 }
|
cannam@95
|
74
|
cannam@95
|
75 {
|
cannam@95
|
76 plan_dft *cldf = (plan_dft *)p->cldf;
|
cannam@95
|
77 /* cldf must be awake */
|
cannam@95
|
78 cldf->apply(p->cldf, W, W+1, W, W+1);
|
cannam@95
|
79 }
|
cannam@95
|
80 }
|
cannam@95
|
81
|
cannam@95
|
82 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
|
cannam@95
|
83 {
|
cannam@95
|
84 const P *ego = (const P *) ego_;
|
cannam@95
|
85 INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os;
|
cannam@95
|
86 R *w = ego->w, *W = ego->W;
|
cannam@95
|
87 R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
|
cannam@95
|
88
|
cannam@95
|
89 /* multiply input by conjugate bluestein sequence */
|
cannam@95
|
90 for (i = 0; i < n; ++i) {
|
cannam@95
|
91 E xr = ri[i*is], xi = ii[i*is];
|
cannam@95
|
92 E wr = w[2*i], wi = w[2*i+1];
|
cannam@95
|
93 b[2*i] = xr * wr + xi * wi;
|
cannam@95
|
94 b[2*i+1] = xi * wr - xr * wi;
|
cannam@95
|
95 }
|
cannam@95
|
96
|
cannam@95
|
97 for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0);
|
cannam@95
|
98
|
cannam@95
|
99 /* convolution: FFT */
|
cannam@95
|
100 {
|
cannam@95
|
101 plan_dft *cldf = (plan_dft *)ego->cldf;
|
cannam@95
|
102 cldf->apply(ego->cldf, b, b+1, b, b+1);
|
cannam@95
|
103 }
|
cannam@95
|
104
|
cannam@95
|
105 /* convolution: pointwise multiplication */
|
cannam@95
|
106 for (i = 0; i < nb; ++i) {
|
cannam@95
|
107 E xr = b[2*i], xi = b[2*i+1];
|
cannam@95
|
108 E wr = W[2*i], wi = W[2*i+1];
|
cannam@95
|
109 b[2*i] = xi * wr + xr * wi;
|
cannam@95
|
110 b[2*i+1] = xr * wr - xi * wi;
|
cannam@95
|
111 }
|
cannam@95
|
112
|
cannam@95
|
113 /* convolution: IFFT by FFT with real/imag input/output swapped */
|
cannam@95
|
114 {
|
cannam@95
|
115 plan_dft *cldf = (plan_dft *)ego->cldf;
|
cannam@95
|
116 cldf->apply(ego->cldf, b, b+1, b, b+1);
|
cannam@95
|
117 }
|
cannam@95
|
118
|
cannam@95
|
119 /* multiply output by conjugate bluestein sequence */
|
cannam@95
|
120 for (i = 0; i < n; ++i) {
|
cannam@95
|
121 E xi = b[2*i], xr = b[2*i+1];
|
cannam@95
|
122 E wr = w[2*i], wi = w[2*i+1];
|
cannam@95
|
123 ro[i*os] = xr * wr + xi * wi;
|
cannam@95
|
124 io[i*os] = xi * wr - xr * wi;
|
cannam@95
|
125 }
|
cannam@95
|
126
|
cannam@95
|
127 X(ifree)(b);
|
cannam@95
|
128 }
|
cannam@95
|
129
|
cannam@95
|
130 static void awake(plan *ego_, enum wakefulness wakefulness)
|
cannam@95
|
131 {
|
cannam@95
|
132 P *ego = (P *) ego_;
|
cannam@95
|
133
|
cannam@95
|
134 X(plan_awake)(ego->cldf, wakefulness);
|
cannam@95
|
135
|
cannam@95
|
136 switch (wakefulness) {
|
cannam@95
|
137 case SLEEPY:
|
cannam@95
|
138 X(ifree0)(ego->w); ego->w = 0;
|
cannam@95
|
139 X(ifree0)(ego->W); ego->W = 0;
|
cannam@95
|
140 break;
|
cannam@95
|
141 default:
|
cannam@95
|
142 A(!ego->w);
|
cannam@95
|
143 mktwiddle(wakefulness, ego);
|
cannam@95
|
144 break;
|
cannam@95
|
145 }
|
cannam@95
|
146 }
|
cannam@95
|
147
|
cannam@95
|
148 static int applicable(const solver *ego, const problem *p_,
|
cannam@95
|
149 const planner *plnr)
|
cannam@95
|
150 {
|
cannam@95
|
151 const problem_dft *p = (const problem_dft *) p_;
|
cannam@95
|
152 UNUSED(ego);
|
cannam@95
|
153 return (1
|
cannam@95
|
154 && p->sz->rnk == 1
|
cannam@95
|
155 && p->vecsz->rnk == 0
|
cannam@95
|
156 /* FIXME: allow other sizes */
|
cannam@95
|
157 && X(is_prime)(p->sz->dims[0].n)
|
cannam@95
|
158
|
cannam@95
|
159 /* FIXME: avoid infinite recursion of bluestein with itself.
|
cannam@95
|
160 This works because all factors in child problems are 2, 3, 5 */
|
cannam@95
|
161 && p->sz->dims[0].n > 16
|
cannam@95
|
162
|
cannam@95
|
163 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW)
|
cannam@95
|
164 );
|
cannam@95
|
165 }
|
cannam@95
|
166
|
cannam@95
|
167 static void destroy(plan *ego_)
|
cannam@95
|
168 {
|
cannam@95
|
169 P *ego = (P *) ego_;
|
cannam@95
|
170 X(plan_destroy_internal)(ego->cldf);
|
cannam@95
|
171 }
|
cannam@95
|
172
|
cannam@95
|
173 static void print(const plan *ego_, printer *p)
|
cannam@95
|
174 {
|
cannam@95
|
175 const P *ego = (const P *)ego_;
|
cannam@95
|
176 p->print(p, "(dft-bluestein-%D/%D%(%p%))",
|
cannam@95
|
177 ego->n, ego->nb, ego->cldf);
|
cannam@95
|
178 }
|
cannam@95
|
179
|
cannam@95
|
180 static INT choose_transform_size(INT minsz)
|
cannam@95
|
181 {
|
cannam@95
|
182 while (!X(factors_into_small_primes)(minsz))
|
cannam@95
|
183 ++minsz;
|
cannam@95
|
184 return minsz;
|
cannam@95
|
185 }
|
cannam@95
|
186
|
cannam@95
|
187 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
|
cannam@95
|
188 {
|
cannam@95
|
189 const problem_dft *p = (const problem_dft *) p_;
|
cannam@95
|
190 P *pln;
|
cannam@95
|
191 INT n, nb;
|
cannam@95
|
192 plan *cldf = 0;
|
cannam@95
|
193 R *buf = (R *) 0;
|
cannam@95
|
194
|
cannam@95
|
195 static const plan_adt padt = {
|
cannam@95
|
196 X(dft_solve), awake, print, destroy
|
cannam@95
|
197 };
|
cannam@95
|
198
|
cannam@95
|
199 if (!applicable(ego, p_, plnr))
|
cannam@95
|
200 return (plan *) 0;
|
cannam@95
|
201
|
cannam@95
|
202 n = p->sz->dims[0].n;
|
cannam@95
|
203 nb = choose_transform_size(2 * n - 1);
|
cannam@95
|
204 buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
|
cannam@95
|
205
|
cannam@95
|
206 cldf = X(mkplan_f_d)(plnr,
|
cannam@95
|
207 X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2),
|
cannam@95
|
208 X(mktensor_1d)(1, 0, 0),
|
cannam@95
|
209 buf, buf+1,
|
cannam@95
|
210 buf, buf+1),
|
cannam@95
|
211 NO_SLOW, 0, 0);
|
cannam@95
|
212 if (!cldf) goto nada;
|
cannam@95
|
213
|
cannam@95
|
214 X(ifree)(buf);
|
cannam@95
|
215
|
cannam@95
|
216 pln = MKPLAN_DFT(P, &padt, apply);
|
cannam@95
|
217
|
cannam@95
|
218 pln->n = n;
|
cannam@95
|
219 pln->nb = nb;
|
cannam@95
|
220 pln->w = 0;
|
cannam@95
|
221 pln->W = 0;
|
cannam@95
|
222 pln->cldf = cldf;
|
cannam@95
|
223 pln->is = p->sz->dims[0].is;
|
cannam@95
|
224 pln->os = p->sz->dims[0].os;
|
cannam@95
|
225
|
cannam@95
|
226 X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops);
|
cannam@95
|
227 pln->super.super.ops.add += 4 * n + 2 * nb;
|
cannam@95
|
228 pln->super.super.ops.mul += 8 * n + 4 * nb;
|
cannam@95
|
229 pln->super.super.ops.other += 6 * (n + nb);
|
cannam@95
|
230
|
cannam@95
|
231 return &(pln->super.super);
|
cannam@95
|
232
|
cannam@95
|
233 nada:
|
cannam@95
|
234 X(ifree0)(buf);
|
cannam@95
|
235 X(plan_destroy_internal)(cldf);
|
cannam@95
|
236 return (plan *)0;
|
cannam@95
|
237 }
|
cannam@95
|
238
|
cannam@95
|
239
|
cannam@95
|
240 static solver *mksolver(void)
|
cannam@95
|
241 {
|
cannam@95
|
242 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
|
cannam@95
|
243 S *slv = MKSOLVER(S, &sadt);
|
cannam@95
|
244 return &(slv->super);
|
cannam@95
|
245 }
|
cannam@95
|
246
|
cannam@95
|
247 void X(dft_bluestein_register)(planner *p)
|
cannam@95
|
248 {
|
cannam@95
|
249 REGISTER_SOLVER(p, mksolver());
|
cannam@95
|
250 }
|