cannam@95
|
1 /*
|
cannam@95
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
cannam@95
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
cannam@95
|
4 *
|
cannam@95
|
5 * This program is free software; you can redistribute it and/or modify
|
cannam@95
|
6 * it under the terms of the GNU General Public License as published by
|
cannam@95
|
7 * the Free Software Foundation; either version 2 of the License, or
|
cannam@95
|
8 * (at your option) any later version.
|
cannam@95
|
9 *
|
cannam@95
|
10 * This program is distributed in the hope that it will be useful,
|
cannam@95
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
cannam@95
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
cannam@95
|
13 * GNU General Public License for more details.
|
cannam@95
|
14 *
|
cannam@95
|
15 * You should have received a copy of the GNU General Public License
|
cannam@95
|
16 * along with this program; if not, write to the Free Software
|
cannam@95
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
cannam@95
|
18 *
|
cannam@95
|
19 */
|
cannam@95
|
20
|
cannam@95
|
21 #include "api.h"
|
cannam@95
|
22 #include <math.h>
|
cannam@95
|
23
|
cannam@95
|
24 /* a flag operation: x is either a flag, in which case xm == 0, or
|
cannam@95
|
25 a mask, in which case xm == x; using this we can compactly code
|
cannam@95
|
26 the various bit operations via (flags & x) ^ xm or (flags | x) ^ xm. */
|
cannam@95
|
27 typedef struct {
|
cannam@95
|
28 unsigned x, xm;
|
cannam@95
|
29 } flagmask;
|
cannam@95
|
30
|
cannam@95
|
31 typedef struct {
|
cannam@95
|
32 flagmask flag;
|
cannam@95
|
33 flagmask op;
|
cannam@95
|
34 } flagop;
|
cannam@95
|
35
|
cannam@95
|
36 #define FLAGP(f, msk)(((f) & (msk).x) ^ (msk).xm)
|
cannam@95
|
37 #define OP(f, msk)(((f) | (msk).x) ^ (msk).xm)
|
cannam@95
|
38
|
cannam@95
|
39 #define YES(x) {x, 0}
|
cannam@95
|
40 #define NO(x) {x, x}
|
cannam@95
|
41 #define IMPLIES(predicate, consequence) { predicate, consequence }
|
cannam@95
|
42 #define EQV(a, b) IMPLIES(YES(a), YES(b)), IMPLIES(NO(a), NO(b))
|
cannam@95
|
43 #define NEQV(a, b) IMPLIES(YES(a), NO(b)), IMPLIES(NO(a), YES(b))
|
cannam@95
|
44
|
cannam@95
|
45 static void map_flags(unsigned *iflags, unsigned *oflags,
|
cannam@95
|
46 const flagop flagmap[], int nmap)
|
cannam@95
|
47 {
|
cannam@95
|
48 int i;
|
cannam@95
|
49 for (i = 0; i < nmap; ++i)
|
cannam@95
|
50 if (FLAGP(*iflags, flagmap[i].flag))
|
cannam@95
|
51 *oflags = OP(*oflags, flagmap[i].op);
|
cannam@95
|
52 }
|
cannam@95
|
53
|
cannam@95
|
54 /* encoding of the planner timelimit into a BITS_FOR_TIMELIMIT-bits
|
cannam@95
|
55 nonnegative integer, such that we can still view the integer as
|
cannam@95
|
56 ``impatience'': higher means *lower* time limit, and 0 is the
|
cannam@95
|
57 highest possible value (about 1 year of calendar time) */
|
cannam@95
|
58 static unsigned timelimit_to_flags(double timelimit)
|
cannam@95
|
59 {
|
cannam@95
|
60 const double tmax = 365 * 24 * 3600;
|
cannam@95
|
61 const double tstep = 1.05;
|
cannam@95
|
62 const int nsteps = (1 << BITS_FOR_TIMELIMIT);
|
cannam@95
|
63 int x;
|
cannam@95
|
64
|
cannam@95
|
65 if (timelimit < 0 || timelimit >= tmax)
|
cannam@95
|
66 return 0;
|
cannam@95
|
67 if (timelimit <= 1.0e-10)
|
cannam@95
|
68 return nsteps - 1;
|
cannam@95
|
69
|
cannam@95
|
70 x = (int) (0.5 + (log(tmax / timelimit) / log(tstep)));
|
cannam@95
|
71
|
cannam@95
|
72 if (x < 0) x = 0;
|
cannam@95
|
73 if (x >= nsteps) x = nsteps - 1;
|
cannam@95
|
74 return x;
|
cannam@95
|
75 }
|
cannam@95
|
76
|
cannam@95
|
77 void X(mapflags)(planner *plnr, unsigned flags)
|
cannam@95
|
78 {
|
cannam@95
|
79 unsigned l, u, t;
|
cannam@95
|
80
|
cannam@95
|
81 /* map of api flags -> api flags, to implement consistency rules
|
cannam@95
|
82 and combination flags */
|
cannam@95
|
83 const flagop self_flagmap[] = {
|
cannam@95
|
84 /* in some cases (notably for halfcomplex->real transforms),
|
cannam@95
|
85 DESTROY_INPUT is the default, so we need to support
|
cannam@95
|
86 an inverse flag to disable it.
|
cannam@95
|
87
|
cannam@95
|
88 (PRESERVE, DESTROY) -> (PRESERVE, DESTROY)
|
cannam@95
|
89 (0, 0) (1, 0)
|
cannam@95
|
90 (0, 1) (0, 1)
|
cannam@95
|
91 (1, 0) (1, 0)
|
cannam@95
|
92 (1, 1) (1, 0)
|
cannam@95
|
93 */
|
cannam@95
|
94 IMPLIES(YES(FFTW_PRESERVE_INPUT), NO(FFTW_DESTROY_INPUT)),
|
cannam@95
|
95 IMPLIES(NO(FFTW_DESTROY_INPUT), YES(FFTW_PRESERVE_INPUT)),
|
cannam@95
|
96
|
cannam@95
|
97 IMPLIES(YES(FFTW_EXHAUSTIVE), YES(FFTW_PATIENT)),
|
cannam@95
|
98
|
cannam@95
|
99 IMPLIES(YES(FFTW_ESTIMATE), NO(FFTW_PATIENT)),
|
cannam@95
|
100 IMPLIES(YES(FFTW_ESTIMATE),
|
cannam@95
|
101 YES(FFTW_ESTIMATE_PATIENT
|
cannam@95
|
102 | FFTW_NO_INDIRECT_OP
|
cannam@95
|
103 | FFTW_ALLOW_PRUNING)),
|
cannam@95
|
104
|
cannam@95
|
105 IMPLIES(NO(FFTW_EXHAUSTIVE),
|
cannam@95
|
106 YES(FFTW_NO_SLOW)),
|
cannam@95
|
107
|
cannam@95
|
108 /* a canonical set of fftw2-like impatience flags */
|
cannam@95
|
109 IMPLIES(NO(FFTW_PATIENT),
|
cannam@95
|
110 YES(FFTW_NO_VRECURSE
|
cannam@95
|
111 | FFTW_NO_RANK_SPLITS
|
cannam@95
|
112 | FFTW_NO_VRANK_SPLITS
|
cannam@95
|
113 | FFTW_NO_NONTHREADED
|
cannam@95
|
114 | FFTW_NO_DFT_R2HC
|
cannam@95
|
115 | FFTW_NO_FIXED_RADIX_LARGE_N
|
cannam@95
|
116 | FFTW_BELIEVE_PCOST))
|
cannam@95
|
117 };
|
cannam@95
|
118
|
cannam@95
|
119 /* map of (processed) api flags to internal problem/planner flags */
|
cannam@95
|
120 const flagop l_flagmap[] = {
|
cannam@95
|
121 EQV(FFTW_PRESERVE_INPUT, NO_DESTROY_INPUT),
|
cannam@95
|
122 EQV(FFTW_NO_SIMD, NO_SIMD),
|
cannam@95
|
123 EQV(FFTW_CONSERVE_MEMORY, CONSERVE_MEMORY),
|
cannam@95
|
124 EQV(FFTW_NO_BUFFERING, NO_BUFFERING),
|
cannam@95
|
125 NEQV(FFTW_ALLOW_LARGE_GENERIC, NO_LARGE_GENERIC)
|
cannam@95
|
126 };
|
cannam@95
|
127
|
cannam@95
|
128 const flagop u_flagmap[] = {
|
cannam@95
|
129 IMPLIES(YES(FFTW_EXHAUSTIVE), NO(0xFFFFFFFF)),
|
cannam@95
|
130 IMPLIES(NO(FFTW_EXHAUSTIVE), YES(NO_UGLY)),
|
cannam@95
|
131
|
cannam@95
|
132 /* the following are undocumented, "beyond-guru" flags that
|
cannam@95
|
133 require some understanding of FFTW internals */
|
cannam@95
|
134 EQV(FFTW_ESTIMATE_PATIENT, ESTIMATE),
|
cannam@95
|
135 EQV(FFTW_ALLOW_PRUNING, ALLOW_PRUNING),
|
cannam@95
|
136 EQV(FFTW_BELIEVE_PCOST, BELIEVE_PCOST),
|
cannam@95
|
137 EQV(FFTW_NO_DFT_R2HC, NO_DFT_R2HC),
|
cannam@95
|
138 EQV(FFTW_NO_NONTHREADED, NO_NONTHREADED),
|
cannam@95
|
139 EQV(FFTW_NO_INDIRECT_OP, NO_INDIRECT_OP),
|
cannam@95
|
140 EQV(FFTW_NO_RANK_SPLITS, NO_RANK_SPLITS),
|
cannam@95
|
141 EQV(FFTW_NO_VRANK_SPLITS, NO_VRANK_SPLITS),
|
cannam@95
|
142 EQV(FFTW_NO_VRECURSE, NO_VRECURSE),
|
cannam@95
|
143 EQV(FFTW_NO_SLOW, NO_SLOW),
|
cannam@95
|
144 EQV(FFTW_NO_FIXED_RADIX_LARGE_N, NO_FIXED_RADIX_LARGE_N)
|
cannam@95
|
145 };
|
cannam@95
|
146
|
cannam@95
|
147 map_flags(&flags, &flags, self_flagmap, NELEM(self_flagmap));
|
cannam@95
|
148
|
cannam@95
|
149 l = u = 0;
|
cannam@95
|
150 map_flags(&flags, &l, l_flagmap, NELEM(l_flagmap));
|
cannam@95
|
151 map_flags(&flags, &u, u_flagmap, NELEM(u_flagmap));
|
cannam@95
|
152
|
cannam@95
|
153 /* enforce l <= u */
|
cannam@95
|
154 PLNR_L(plnr) = l;
|
cannam@95
|
155 PLNR_U(plnr) = u | l;
|
cannam@95
|
156
|
cannam@95
|
157 /* assert that the conversion didn't lose bits */
|
cannam@95
|
158 A(PLNR_L(plnr) == l);
|
cannam@95
|
159 A(PLNR_U(plnr) == (u | l));
|
cannam@95
|
160
|
cannam@95
|
161 /* compute flags representation of the timelimit */
|
cannam@95
|
162 t = timelimit_to_flags(plnr->timelimit);
|
cannam@95
|
163
|
cannam@95
|
164 PLNR_TIMELIMIT_IMPATIENCE(plnr) = t;
|
cannam@95
|
165 A(PLNR_TIMELIMIT_IMPATIENCE(plnr) == t);
|
cannam@95
|
166 }
|