cannam@147
|
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
cannam@147
|
2 // Licensed under the MIT License:
|
cannam@147
|
3 //
|
cannam@147
|
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
|
cannam@147
|
5 // of this software and associated documentation files (the "Software"), to deal
|
cannam@147
|
6 // in the Software without restriction, including without limitation the rights
|
cannam@147
|
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
cannam@147
|
8 // copies of the Software, and to permit persons to whom the Software is
|
cannam@147
|
9 // furnished to do so, subject to the following conditions:
|
cannam@147
|
10 //
|
cannam@147
|
11 // The above copyright notice and this permission notice shall be included in
|
cannam@147
|
12 // all copies or substantial portions of the Software.
|
cannam@147
|
13 //
|
cannam@147
|
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
cannam@147
|
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
cannam@147
|
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
cannam@147
|
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
cannam@147
|
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
cannam@147
|
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
cannam@147
|
20 // THE SOFTWARE.
|
cannam@147
|
21
|
cannam@147
|
22 // This file contains types which are intended to help detect incorrect usage at compile
|
cannam@147
|
23 // time, but should then be optimized down to basic primitives (usually, integers) by the
|
cannam@147
|
24 // compiler.
|
cannam@147
|
25
|
cannam@147
|
26 #ifndef KJ_UNITS_H_
|
cannam@147
|
27 #define KJ_UNITS_H_
|
cannam@147
|
28
|
cannam@147
|
29 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
|
cannam@147
|
30 #pragma GCC system_header
|
cannam@147
|
31 #endif
|
cannam@147
|
32
|
cannam@147
|
33 #include "common.h"
|
cannam@147
|
34 #include <inttypes.h>
|
cannam@147
|
35
|
cannam@147
|
36 namespace kj {
|
cannam@147
|
37
|
cannam@147
|
38 // =======================================================================================
|
cannam@147
|
39 // IDs
|
cannam@147
|
40
|
cannam@147
|
41 template <typename UnderlyingType, typename Label>
|
cannam@147
|
42 struct Id {
|
cannam@147
|
43 // A type-safe numeric ID. `UnderlyingType` is the underlying integer representation. `Label`
|
cannam@147
|
44 // distinguishes this Id from other Id types. Sample usage:
|
cannam@147
|
45 //
|
cannam@147
|
46 // class Foo;
|
cannam@147
|
47 // typedef Id<uint, Foo> FooId;
|
cannam@147
|
48 //
|
cannam@147
|
49 // class Bar;
|
cannam@147
|
50 // typedef Id<uint, Bar> BarId;
|
cannam@147
|
51 //
|
cannam@147
|
52 // You can now use the FooId and BarId types without any possibility of accidentally using a
|
cannam@147
|
53 // FooId when you really wanted a BarId or vice-versa.
|
cannam@147
|
54
|
cannam@147
|
55 UnderlyingType value;
|
cannam@147
|
56
|
cannam@147
|
57 inline constexpr Id(): value(0) {}
|
cannam@147
|
58 inline constexpr explicit Id(int value): value(value) {}
|
cannam@147
|
59
|
cannam@147
|
60 inline constexpr bool operator==(const Id& other) const { return value == other.value; }
|
cannam@147
|
61 inline constexpr bool operator!=(const Id& other) const { return value != other.value; }
|
cannam@147
|
62 inline constexpr bool operator<=(const Id& other) const { return value <= other.value; }
|
cannam@147
|
63 inline constexpr bool operator>=(const Id& other) const { return value >= other.value; }
|
cannam@147
|
64 inline constexpr bool operator< (const Id& other) const { return value < other.value; }
|
cannam@147
|
65 inline constexpr bool operator> (const Id& other) const { return value > other.value; }
|
cannam@147
|
66 };
|
cannam@147
|
67
|
cannam@147
|
68 // =======================================================================================
|
cannam@147
|
69 // Quantity and UnitRatio -- implement unit analysis via the type system
|
cannam@147
|
70
|
cannam@147
|
71 struct Unsafe_ {};
|
cannam@147
|
72 constexpr Unsafe_ unsafe = Unsafe_();
|
cannam@147
|
73 // Use as a parameter to constructors that are unsafe to indicate that you really do mean it.
|
cannam@147
|
74
|
cannam@147
|
75 template <uint64_t maxN, typename T>
|
cannam@147
|
76 class Bounded;
|
cannam@147
|
77 template <uint value>
|
cannam@147
|
78 class BoundedConst;
|
cannam@147
|
79
|
cannam@147
|
80 template <typename T> constexpr bool isIntegral() { return false; }
|
cannam@147
|
81 template <> constexpr bool isIntegral<char>() { return true; }
|
cannam@147
|
82 template <> constexpr bool isIntegral<signed char>() { return true; }
|
cannam@147
|
83 template <> constexpr bool isIntegral<short>() { return true; }
|
cannam@147
|
84 template <> constexpr bool isIntegral<int>() { return true; }
|
cannam@147
|
85 template <> constexpr bool isIntegral<long>() { return true; }
|
cannam@147
|
86 template <> constexpr bool isIntegral<long long>() { return true; }
|
cannam@147
|
87 template <> constexpr bool isIntegral<unsigned char>() { return true; }
|
cannam@147
|
88 template <> constexpr bool isIntegral<unsigned short>() { return true; }
|
cannam@147
|
89 template <> constexpr bool isIntegral<unsigned int>() { return true; }
|
cannam@147
|
90 template <> constexpr bool isIntegral<unsigned long>() { return true; }
|
cannam@147
|
91 template <> constexpr bool isIntegral<unsigned long long>() { return true; }
|
cannam@147
|
92
|
cannam@147
|
93 template <typename T>
|
cannam@147
|
94 struct IsIntegralOrBounded_ { static constexpr bool value = isIntegral<T>(); };
|
cannam@147
|
95 template <uint64_t m, typename T>
|
cannam@147
|
96 struct IsIntegralOrBounded_<Bounded<m, T>> { static constexpr bool value = true; };
|
cannam@147
|
97 template <uint v>
|
cannam@147
|
98 struct IsIntegralOrBounded_<BoundedConst<v>> { static constexpr bool value = true; };
|
cannam@147
|
99
|
cannam@147
|
100 template <typename T>
|
cannam@147
|
101 inline constexpr bool isIntegralOrBounded() { return IsIntegralOrBounded_<T>::value; }
|
cannam@147
|
102
|
cannam@147
|
103 template <typename Number, typename Unit1, typename Unit2>
|
cannam@147
|
104 class UnitRatio {
|
cannam@147
|
105 // A multiplier used to convert Quantities of one unit to Quantities of another unit. See
|
cannam@147
|
106 // Quantity, below.
|
cannam@147
|
107 //
|
cannam@147
|
108 // Construct this type by dividing one Quantity by another of a different unit. Use this type
|
cannam@147
|
109 // by multiplying it by a Quantity, or dividing a Quantity by it.
|
cannam@147
|
110
|
cannam@147
|
111 static_assert(isIntegralOrBounded<Number>(),
|
cannam@147
|
112 "Underlying type for UnitRatio must be integer.");
|
cannam@147
|
113
|
cannam@147
|
114 public:
|
cannam@147
|
115 inline UnitRatio() {}
|
cannam@147
|
116
|
cannam@147
|
117 constexpr UnitRatio(Number unit1PerUnit2, decltype(unsafe)): unit1PerUnit2(unit1PerUnit2) {}
|
cannam@147
|
118 // This constructor was intended to be private, but GCC complains about it being private in a
|
cannam@147
|
119 // bunch of places that don't appear to even call it, so I made it public. Oh well.
|
cannam@147
|
120
|
cannam@147
|
121 template <typename OtherNumber>
|
cannam@147
|
122 inline constexpr UnitRatio(const UnitRatio<OtherNumber, Unit1, Unit2>& other)
|
cannam@147
|
123 : unit1PerUnit2(other.unit1PerUnit2) {}
|
cannam@147
|
124
|
cannam@147
|
125 template <typename OtherNumber>
|
cannam@147
|
126 inline constexpr UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>
|
cannam@147
|
127 operator+(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
cannam@147
|
128 return UnitRatio<decltype(Number()+OtherNumber()), Unit1, Unit2>(
|
cannam@147
|
129 unit1PerUnit2 + other.unit1PerUnit2, unsafe);
|
cannam@147
|
130 }
|
cannam@147
|
131 template <typename OtherNumber>
|
cannam@147
|
132 inline constexpr UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>
|
cannam@147
|
133 operator-(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
cannam@147
|
134 return UnitRatio<decltype(Number()-OtherNumber()), Unit1, Unit2>(
|
cannam@147
|
135 unit1PerUnit2 - other.unit1PerUnit2, unsafe);
|
cannam@147
|
136 }
|
cannam@147
|
137
|
cannam@147
|
138 template <typename OtherNumber, typename Unit3>
|
cannam@147
|
139 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
|
cannam@147
|
140 operator*(UnitRatio<OtherNumber, Unit3, Unit1> other) const {
|
cannam@147
|
141 // U1 / U2 * U3 / U1 = U3 / U2
|
cannam@147
|
142 return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
|
cannam@147
|
143 unit1PerUnit2 * other.unit1PerUnit2, unsafe);
|
cannam@147
|
144 }
|
cannam@147
|
145 template <typename OtherNumber, typename Unit3>
|
cannam@147
|
146 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
|
cannam@147
|
147 operator*(UnitRatio<OtherNumber, Unit2, Unit3> other) const {
|
cannam@147
|
148 // U1 / U2 * U2 / U3 = U1 / U3
|
cannam@147
|
149 return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
|
cannam@147
|
150 unit1PerUnit2 * other.unit1PerUnit2, unsafe);
|
cannam@147
|
151 }
|
cannam@147
|
152
|
cannam@147
|
153 template <typename OtherNumber, typename Unit3>
|
cannam@147
|
154 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>
|
cannam@147
|
155 operator/(UnitRatio<OtherNumber, Unit1, Unit3> other) const {
|
cannam@147
|
156 // (U1 / U2) / (U1 / U3) = U3 / U2
|
cannam@147
|
157 return UnitRatio<decltype(Number()*OtherNumber()), Unit3, Unit2>(
|
cannam@147
|
158 unit1PerUnit2 / other.unit1PerUnit2, unsafe);
|
cannam@147
|
159 }
|
cannam@147
|
160 template <typename OtherNumber, typename Unit3>
|
cannam@147
|
161 inline constexpr UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>
|
cannam@147
|
162 operator/(UnitRatio<OtherNumber, Unit3, Unit2> other) const {
|
cannam@147
|
163 // (U1 / U2) / (U3 / U2) = U1 / U3
|
cannam@147
|
164 return UnitRatio<decltype(Number()*OtherNumber()), Unit1, Unit3>(
|
cannam@147
|
165 unit1PerUnit2 / other.unit1PerUnit2, unsafe);
|
cannam@147
|
166 }
|
cannam@147
|
167
|
cannam@147
|
168 template <typename OtherNumber>
|
cannam@147
|
169 inline decltype(Number() / OtherNumber())
|
cannam@147
|
170 operator/(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
cannam@147
|
171 return unit1PerUnit2 / other.unit1PerUnit2;
|
cannam@147
|
172 }
|
cannam@147
|
173
|
cannam@147
|
174 inline bool operator==(UnitRatio other) const { return unit1PerUnit2 == other.unit1PerUnit2; }
|
cannam@147
|
175 inline bool operator!=(UnitRatio other) const { return unit1PerUnit2 != other.unit1PerUnit2; }
|
cannam@147
|
176
|
cannam@147
|
177 private:
|
cannam@147
|
178 Number unit1PerUnit2;
|
cannam@147
|
179
|
cannam@147
|
180 template <typename OtherNumber, typename OtherUnit>
|
cannam@147
|
181 friend class Quantity;
|
cannam@147
|
182 template <typename OtherNumber, typename OtherUnit1, typename OtherUnit2>
|
cannam@147
|
183 friend class UnitRatio;
|
cannam@147
|
184
|
cannam@147
|
185 template <typename N1, typename N2, typename U1, typename U2, typename>
|
cannam@147
|
186 friend inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
|
cannam@147
|
187 operator*(N1, UnitRatio<N2, U1, U2>);
|
cannam@147
|
188 };
|
cannam@147
|
189
|
cannam@147
|
190 template <typename N1, typename N2, typename U1, typename U2,
|
cannam@147
|
191 typename = EnableIf<isIntegralOrBounded<N1>() && isIntegralOrBounded<N2>()>>
|
cannam@147
|
192 inline constexpr UnitRatio<decltype(N1() * N2()), U1, U2>
|
cannam@147
|
193 operator*(N1 n, UnitRatio<N2, U1, U2> r) {
|
cannam@147
|
194 return UnitRatio<decltype(N1() * N2()), U1, U2>(n * r.unit1PerUnit2, unsafe);
|
cannam@147
|
195 }
|
cannam@147
|
196
|
cannam@147
|
197 template <typename Number, typename Unit>
|
cannam@147
|
198 class Quantity {
|
cannam@147
|
199 // A type-safe numeric quantity, specified in terms of some unit. Two Quantities cannot be used
|
cannam@147
|
200 // in arithmetic unless they use the same unit. The `Unit` type parameter is only used to prevent
|
cannam@147
|
201 // accidental mixing of units; this type is never instantiated and can very well be incomplete.
|
cannam@147
|
202 // `Number` is the underlying primitive numeric type.
|
cannam@147
|
203 //
|
cannam@147
|
204 // Quantities support most basic arithmetic operators, intelligently handling units, and
|
cannam@147
|
205 // automatically casting the underlying type in the same way that the compiler would.
|
cannam@147
|
206 //
|
cannam@147
|
207 // To convert a primitive number to a Quantity, multiply it by unit<Quantity<N, U>>().
|
cannam@147
|
208 // To convert a Quantity to a primitive number, divide it by unit<Quantity<N, U>>().
|
cannam@147
|
209 // To convert a Quantity of one unit to another unit, multiply or divide by a UnitRatio.
|
cannam@147
|
210 //
|
cannam@147
|
211 // The Quantity class is not well-suited to hardcore physics as it does not allow multiplying
|
cannam@147
|
212 // one quantity by another. For example, multiplying meters by meters won't get you square
|
cannam@147
|
213 // meters; it will get you a compiler error. It would be interesting to see if template
|
cannam@147
|
214 // metaprogramming could properly deal with such things but this isn't needed for the present
|
cannam@147
|
215 // use case.
|
cannam@147
|
216 //
|
cannam@147
|
217 // Sample usage:
|
cannam@147
|
218 //
|
cannam@147
|
219 // class SecondsLabel;
|
cannam@147
|
220 // typedef Quantity<double, SecondsLabel> Seconds;
|
cannam@147
|
221 // constexpr Seconds SECONDS = unit<Seconds>();
|
cannam@147
|
222 //
|
cannam@147
|
223 // class MinutesLabel;
|
cannam@147
|
224 // typedef Quantity<double, MinutesLabel> Minutes;
|
cannam@147
|
225 // constexpr Minutes MINUTES = unit<Minutes>();
|
cannam@147
|
226 //
|
cannam@147
|
227 // constexpr UnitRatio<double, SecondsLabel, MinutesLabel> SECONDS_PER_MINUTE =
|
cannam@147
|
228 // 60 * SECONDS / MINUTES;
|
cannam@147
|
229 //
|
cannam@147
|
230 // void waitFor(Seconds seconds) {
|
cannam@147
|
231 // sleep(seconds / SECONDS);
|
cannam@147
|
232 // }
|
cannam@147
|
233 // void waitFor(Minutes minutes) {
|
cannam@147
|
234 // waitFor(minutes * SECONDS_PER_MINUTE);
|
cannam@147
|
235 // }
|
cannam@147
|
236 //
|
cannam@147
|
237 // void waitThreeMinutes() {
|
cannam@147
|
238 // waitFor(3 * MINUTES);
|
cannam@147
|
239 // }
|
cannam@147
|
240
|
cannam@147
|
241 static_assert(isIntegralOrBounded<Number>(),
|
cannam@147
|
242 "Underlying type for Quantity must be integer.");
|
cannam@147
|
243
|
cannam@147
|
244 public:
|
cannam@147
|
245 inline constexpr Quantity() = default;
|
cannam@147
|
246
|
cannam@147
|
247 inline constexpr Quantity(MaxValue_): value(maxValue) {}
|
cannam@147
|
248 inline constexpr Quantity(MinValue_): value(minValue) {}
|
cannam@147
|
249 // Allow initialization from maxValue and minValue.
|
cannam@147
|
250 // TODO(msvc): decltype(maxValue) and decltype(minValue) deduce unknown-type for these function
|
cannam@147
|
251 // parameters, causing the compiler to complain of a duplicate constructor definition, so we
|
cannam@147
|
252 // specify MaxValue_ and MinValue_ types explicitly.
|
cannam@147
|
253
|
cannam@147
|
254 inline constexpr Quantity(Number value, decltype(unsafe)): value(value) {}
|
cannam@147
|
255 // This constructor was intended to be private, but GCC complains about it being private in a
|
cannam@147
|
256 // bunch of places that don't appear to even call it, so I made it public. Oh well.
|
cannam@147
|
257
|
cannam@147
|
258 template <typename OtherNumber>
|
cannam@147
|
259 inline constexpr Quantity(const Quantity<OtherNumber, Unit>& other)
|
cannam@147
|
260 : value(other.value) {}
|
cannam@147
|
261
|
cannam@147
|
262 template <typename OtherNumber>
|
cannam@147
|
263 inline Quantity& operator=(const Quantity<OtherNumber, Unit>& other) {
|
cannam@147
|
264 value = other.value;
|
cannam@147
|
265 return *this;
|
cannam@147
|
266 }
|
cannam@147
|
267
|
cannam@147
|
268 template <typename OtherNumber>
|
cannam@147
|
269 inline constexpr Quantity<decltype(Number() + OtherNumber()), Unit>
|
cannam@147
|
270 operator+(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@147
|
271 return Quantity<decltype(Number() + OtherNumber()), Unit>(value + other.value, unsafe);
|
cannam@147
|
272 }
|
cannam@147
|
273 template <typename OtherNumber>
|
cannam@147
|
274 inline constexpr Quantity<decltype(Number() - OtherNumber()), Unit>
|
cannam@147
|
275 operator-(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@147
|
276 return Quantity<decltype(Number() - OtherNumber()), Unit>(value - other.value, unsafe);
|
cannam@147
|
277 }
|
cannam@147
|
278 template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
|
cannam@147
|
279 inline constexpr Quantity<decltype(Number() * OtherNumber()), Unit>
|
cannam@147
|
280 operator*(OtherNumber other) const {
|
cannam@147
|
281 return Quantity<decltype(Number() * other), Unit>(value * other, unsafe);
|
cannam@147
|
282 }
|
cannam@147
|
283 template <typename OtherNumber, typename = EnableIf<isIntegralOrBounded<OtherNumber>()>>
|
cannam@147
|
284 inline constexpr Quantity<decltype(Number() / OtherNumber()), Unit>
|
cannam@147
|
285 operator/(OtherNumber other) const {
|
cannam@147
|
286 return Quantity<decltype(Number() / other), Unit>(value / other, unsafe);
|
cannam@147
|
287 }
|
cannam@147
|
288 template <typename OtherNumber>
|
cannam@147
|
289 inline constexpr decltype(Number() / OtherNumber())
|
cannam@147
|
290 operator/(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@147
|
291 return value / other.value;
|
cannam@147
|
292 }
|
cannam@147
|
293 template <typename OtherNumber>
|
cannam@147
|
294 inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
|
cannam@147
|
295 operator%(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@147
|
296 return Quantity<decltype(Number() % OtherNumber()), Unit>(value % other.value, unsafe);
|
cannam@147
|
297 }
|
cannam@147
|
298
|
cannam@147
|
299 template <typename OtherNumber, typename OtherUnit>
|
cannam@147
|
300 inline constexpr Quantity<decltype(Number() * OtherNumber()), OtherUnit>
|
cannam@147
|
301 operator*(UnitRatio<OtherNumber, OtherUnit, Unit> ratio) const {
|
cannam@147
|
302 return Quantity<decltype(Number() * OtherNumber()), OtherUnit>(
|
cannam@147
|
303 value * ratio.unit1PerUnit2, unsafe);
|
cannam@147
|
304 }
|
cannam@147
|
305 template <typename OtherNumber, typename OtherUnit>
|
cannam@147
|
306 inline constexpr Quantity<decltype(Number() / OtherNumber()), OtherUnit>
|
cannam@147
|
307 operator/(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
|
cannam@147
|
308 return Quantity<decltype(Number() / OtherNumber()), OtherUnit>(
|
cannam@147
|
309 value / ratio.unit1PerUnit2, unsafe);
|
cannam@147
|
310 }
|
cannam@147
|
311 template <typename OtherNumber, typename OtherUnit>
|
cannam@147
|
312 inline constexpr Quantity<decltype(Number() % OtherNumber()), Unit>
|
cannam@147
|
313 operator%(UnitRatio<OtherNumber, Unit, OtherUnit> ratio) const {
|
cannam@147
|
314 return Quantity<decltype(Number() % OtherNumber()), Unit>(
|
cannam@147
|
315 value % ratio.unit1PerUnit2, unsafe);
|
cannam@147
|
316 }
|
cannam@147
|
317 template <typename OtherNumber, typename OtherUnit>
|
cannam@147
|
318 inline constexpr UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>
|
cannam@147
|
319 operator/(Quantity<OtherNumber, OtherUnit> other) const {
|
cannam@147
|
320 return UnitRatio<decltype(Number() / OtherNumber()), Unit, OtherUnit>(
|
cannam@147
|
321 value / other.value, unsafe);
|
cannam@147
|
322 }
|
cannam@147
|
323
|
cannam@147
|
324 template <typename OtherNumber>
|
cannam@147
|
325 inline constexpr bool operator==(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@147
|
326 return value == other.value;
|
cannam@147
|
327 }
|
cannam@147
|
328 template <typename OtherNumber>
|
cannam@147
|
329 inline constexpr bool operator!=(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@147
|
330 return value != other.value;
|
cannam@147
|
331 }
|
cannam@147
|
332 template <typename OtherNumber>
|
cannam@147
|
333 inline constexpr bool operator<=(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@147
|
334 return value <= other.value;
|
cannam@147
|
335 }
|
cannam@147
|
336 template <typename OtherNumber>
|
cannam@147
|
337 inline constexpr bool operator>=(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@147
|
338 return value >= other.value;
|
cannam@147
|
339 }
|
cannam@147
|
340 template <typename OtherNumber>
|
cannam@147
|
341 inline constexpr bool operator<(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@147
|
342 return value < other.value;
|
cannam@147
|
343 }
|
cannam@147
|
344 template <typename OtherNumber>
|
cannam@147
|
345 inline constexpr bool operator>(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@147
|
346 return value > other.value;
|
cannam@147
|
347 }
|
cannam@147
|
348
|
cannam@147
|
349 template <typename OtherNumber>
|
cannam@147
|
350 inline Quantity& operator+=(const Quantity<OtherNumber, Unit>& other) {
|
cannam@147
|
351 value += other.value;
|
cannam@147
|
352 return *this;
|
cannam@147
|
353 }
|
cannam@147
|
354 template <typename OtherNumber>
|
cannam@147
|
355 inline Quantity& operator-=(const Quantity<OtherNumber, Unit>& other) {
|
cannam@147
|
356 value -= other.value;
|
cannam@147
|
357 return *this;
|
cannam@147
|
358 }
|
cannam@147
|
359 template <typename OtherNumber>
|
cannam@147
|
360 inline Quantity& operator*=(OtherNumber other) {
|
cannam@147
|
361 value *= other;
|
cannam@147
|
362 return *this;
|
cannam@147
|
363 }
|
cannam@147
|
364 template <typename OtherNumber>
|
cannam@147
|
365 inline Quantity& operator/=(OtherNumber other) {
|
cannam@147
|
366 value /= other.value;
|
cannam@147
|
367 return *this;
|
cannam@147
|
368 }
|
cannam@147
|
369
|
cannam@147
|
370 private:
|
cannam@147
|
371 Number value;
|
cannam@147
|
372
|
cannam@147
|
373 template <typename OtherNumber, typename OtherUnit>
|
cannam@147
|
374 friend class Quantity;
|
cannam@147
|
375
|
cannam@147
|
376 template <typename Number1, typename Number2, typename Unit2>
|
cannam@147
|
377 friend inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit2> b)
|
cannam@147
|
378 -> Quantity<decltype(Number1() * Number2()), Unit2>;
|
cannam@147
|
379 };
|
cannam@147
|
380
|
cannam@147
|
381 template <typename T> struct Unit_ {
|
cannam@147
|
382 static inline constexpr T get() { return T(1); }
|
cannam@147
|
383 };
|
cannam@147
|
384 template <typename T, typename U>
|
cannam@147
|
385 struct Unit_<Quantity<T, U>> {
|
cannam@147
|
386 static inline constexpr Quantity<decltype(Unit_<T>::get()), U> get() {
|
cannam@147
|
387 return Quantity<decltype(Unit_<T>::get()), U>(Unit_<T>::get(), unsafe);
|
cannam@147
|
388 }
|
cannam@147
|
389 };
|
cannam@147
|
390
|
cannam@147
|
391 template <typename T>
|
cannam@147
|
392 inline constexpr auto unit() -> decltype(Unit_<T>::get()) { return Unit_<T>::get(); }
|
cannam@147
|
393 // unit<Quantity<T, U>>() returns a Quantity of value 1. It also, intentionally, works on basic
|
cannam@147
|
394 // numeric types.
|
cannam@147
|
395
|
cannam@147
|
396 template <typename Number1, typename Number2, typename Unit>
|
cannam@147
|
397 inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit> b)
|
cannam@147
|
398 -> Quantity<decltype(Number1() * Number2()), Unit> {
|
cannam@147
|
399 return Quantity<decltype(Number1() * Number2()), Unit>(a * b.value, unsafe);
|
cannam@147
|
400 }
|
cannam@147
|
401
|
cannam@147
|
402 template <typename Number1, typename Number2, typename Unit, typename Unit2>
|
cannam@147
|
403 inline constexpr auto operator*(UnitRatio<Number1, Unit2, Unit> ratio,
|
cannam@147
|
404 Quantity<Number2, Unit> measure)
|
cannam@147
|
405 -> decltype(measure * ratio) {
|
cannam@147
|
406 return measure * ratio;
|
cannam@147
|
407 }
|
cannam@147
|
408
|
cannam@147
|
409 // =======================================================================================
|
cannam@147
|
410 // Absolute measures
|
cannam@147
|
411
|
cannam@147
|
412 template <typename T, typename Label>
|
cannam@147
|
413 class Absolute {
|
cannam@147
|
414 // Wraps some other value -- typically a Quantity -- but represents a value measured based on
|
cannam@147
|
415 // some absolute origin. For example, if `Duration` is a type representing a time duration,
|
cannam@147
|
416 // Absolute<Duration, UnixEpoch> might be a calendar date.
|
cannam@147
|
417 //
|
cannam@147
|
418 // Since Absolute represents measurements relative to some arbitrary origin, the only sensible
|
cannam@147
|
419 // arithmetic to perform on them is addition and subtraction.
|
cannam@147
|
420
|
cannam@147
|
421 // TODO(someday): Do the same automatic expansion of integer width that Quantity does? Doesn't
|
cannam@147
|
422 // matter for our time use case, where we always use 64-bit anyway. Note that fixing this
|
cannam@147
|
423 // would implicitly allow things like multiplying an Absolute by a UnitRatio to change its
|
cannam@147
|
424 // units, which is actually totally logical and kind of neat.
|
cannam@147
|
425
|
cannam@147
|
426 public:
|
cannam@147
|
427 inline constexpr Absolute operator+(const T& other) const { return Absolute(value + other); }
|
cannam@147
|
428 inline constexpr Absolute operator-(const T& other) const { return Absolute(value - other); }
|
cannam@147
|
429 inline constexpr T operator-(const Absolute& other) const { return value - other.value; }
|
cannam@147
|
430
|
cannam@147
|
431 inline Absolute& operator+=(const T& other) { value += other; return *this; }
|
cannam@147
|
432 inline Absolute& operator-=(const T& other) { value -= other; return *this; }
|
cannam@147
|
433
|
cannam@147
|
434 inline constexpr bool operator==(const Absolute& other) const { return value == other.value; }
|
cannam@147
|
435 inline constexpr bool operator!=(const Absolute& other) const { return value != other.value; }
|
cannam@147
|
436 inline constexpr bool operator<=(const Absolute& other) const { return value <= other.value; }
|
cannam@147
|
437 inline constexpr bool operator>=(const Absolute& other) const { return value >= other.value; }
|
cannam@147
|
438 inline constexpr bool operator< (const Absolute& other) const { return value < other.value; }
|
cannam@147
|
439 inline constexpr bool operator> (const Absolute& other) const { return value > other.value; }
|
cannam@147
|
440
|
cannam@147
|
441 private:
|
cannam@147
|
442 T value;
|
cannam@147
|
443
|
cannam@147
|
444 explicit constexpr Absolute(T value): value(value) {}
|
cannam@147
|
445
|
cannam@147
|
446 template <typename U>
|
cannam@147
|
447 friend inline constexpr U origin();
|
cannam@147
|
448 };
|
cannam@147
|
449
|
cannam@147
|
450 template <typename T, typename Label>
|
cannam@147
|
451 inline constexpr Absolute<T, Label> operator+(const T& a, const Absolute<T, Label>& b) {
|
cannam@147
|
452 return b + a;
|
cannam@147
|
453 }
|
cannam@147
|
454
|
cannam@147
|
455 template <typename T> struct UnitOf_ { typedef T Type; };
|
cannam@147
|
456 template <typename T, typename Label> struct UnitOf_<Absolute<T, Label>> { typedef T Type; };
|
cannam@147
|
457 template <typename T>
|
cannam@147
|
458 using UnitOf = typename UnitOf_<T>::Type;
|
cannam@147
|
459 // UnitOf<Absolute<T, U>> is T. UnitOf<AnythingElse> is AnythingElse.
|
cannam@147
|
460
|
cannam@147
|
461 template <typename T>
|
cannam@147
|
462 inline constexpr T origin() { return T(0 * unit<UnitOf<T>>()); }
|
cannam@147
|
463 // origin<Absolute<T, U>>() returns an Absolute of value 0. It also, intentionally, works on basic
|
cannam@147
|
464 // numeric types.
|
cannam@147
|
465
|
cannam@147
|
466 // =======================================================================================
|
cannam@147
|
467 // Overflow avoidance
|
cannam@147
|
468
|
cannam@147
|
469 template <uint64_t n, uint accum = 0>
|
cannam@147
|
470 struct BitCount_ {
|
cannam@147
|
471 static constexpr uint value = BitCount_<(n >> 1), accum + 1>::value;
|
cannam@147
|
472 };
|
cannam@147
|
473 template <uint accum>
|
cannam@147
|
474 struct BitCount_<0, accum> {
|
cannam@147
|
475 static constexpr uint value = accum;
|
cannam@147
|
476 };
|
cannam@147
|
477
|
cannam@147
|
478 template <uint64_t n>
|
cannam@147
|
479 inline constexpr uint bitCount() { return BitCount_<n>::value; }
|
cannam@147
|
480 // Number of bits required to represent the number `n`.
|
cannam@147
|
481
|
cannam@147
|
482 template <uint bitCountBitCount> struct AtLeastUInt_ {
|
cannam@147
|
483 static_assert(bitCountBitCount < 7, "don't know how to represent integers over 64 bits");
|
cannam@147
|
484 };
|
cannam@147
|
485 template <> struct AtLeastUInt_<0> { typedef uint8_t Type; };
|
cannam@147
|
486 template <> struct AtLeastUInt_<1> { typedef uint8_t Type; };
|
cannam@147
|
487 template <> struct AtLeastUInt_<2> { typedef uint8_t Type; };
|
cannam@147
|
488 template <> struct AtLeastUInt_<3> { typedef uint8_t Type; };
|
cannam@147
|
489 template <> struct AtLeastUInt_<4> { typedef uint16_t Type; };
|
cannam@147
|
490 template <> struct AtLeastUInt_<5> { typedef uint32_t Type; };
|
cannam@147
|
491 template <> struct AtLeastUInt_<6> { typedef uint64_t Type; };
|
cannam@147
|
492
|
cannam@147
|
493 template <uint bits>
|
cannam@147
|
494 using AtLeastUInt = typename AtLeastUInt_<bitCount<max(bits, 1) - 1>()>::Type;
|
cannam@147
|
495 // AtLeastUInt<n> is an unsigned integer of at least n bits. E.g. AtLeastUInt<12> is uint16_t.
|
cannam@147
|
496
|
cannam@147
|
497 // -------------------------------------------------------------------
|
cannam@147
|
498
|
cannam@147
|
499 template <uint value>
|
cannam@147
|
500 class BoundedConst {
|
cannam@147
|
501 // A constant integer value on which we can do bit size analysis.
|
cannam@147
|
502
|
cannam@147
|
503 public:
|
cannam@147
|
504 BoundedConst() = default;
|
cannam@147
|
505
|
cannam@147
|
506 inline constexpr uint unwrap() const { return value; }
|
cannam@147
|
507
|
cannam@147
|
508 #define OP(op, check) \
|
cannam@147
|
509 template <uint other> \
|
cannam@147
|
510 inline constexpr BoundedConst<(value op other)> \
|
cannam@147
|
511 operator op(BoundedConst<other>) const { \
|
cannam@147
|
512 static_assert(check, "overflow in BoundedConst arithmetic"); \
|
cannam@147
|
513 return BoundedConst<(value op other)>(); \
|
cannam@147
|
514 }
|
cannam@147
|
515 #define COMPARE_OP(op) \
|
cannam@147
|
516 template <uint other> \
|
cannam@147
|
517 inline constexpr bool operator op(BoundedConst<other>) const { \
|
cannam@147
|
518 return value op other; \
|
cannam@147
|
519 }
|
cannam@147
|
520
|
cannam@147
|
521 OP(+, value + other >= value)
|
cannam@147
|
522 OP(-, value - other <= value)
|
cannam@147
|
523 OP(*, value * other / other == value)
|
cannam@147
|
524 OP(/, true) // div by zero already errors out; no other division ever overflows
|
cannam@147
|
525 OP(%, true) // mod by zero already errors out; no other modulus ever overflows
|
cannam@147
|
526 OP(<<, value << other >= value)
|
cannam@147
|
527 OP(>>, true) // right shift can't overflow
|
cannam@147
|
528 OP(&, true) // bitwise ops can't overflow
|
cannam@147
|
529 OP(|, true) // bitwise ops can't overflow
|
cannam@147
|
530
|
cannam@147
|
531 COMPARE_OP(==)
|
cannam@147
|
532 COMPARE_OP(!=)
|
cannam@147
|
533 COMPARE_OP(< )
|
cannam@147
|
534 COMPARE_OP(> )
|
cannam@147
|
535 COMPARE_OP(<=)
|
cannam@147
|
536 COMPARE_OP(>=)
|
cannam@147
|
537 #undef OP
|
cannam@147
|
538 #undef COMPARE_OP
|
cannam@147
|
539 };
|
cannam@147
|
540
|
cannam@147
|
541 template <uint64_t m, typename T>
|
cannam@147
|
542 struct Unit_<Bounded<m, T>> {
|
cannam@147
|
543 static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
|
cannam@147
|
544 };
|
cannam@147
|
545
|
cannam@147
|
546 template <uint value>
|
cannam@147
|
547 struct Unit_<BoundedConst<value>> {
|
cannam@147
|
548 static inline constexpr BoundedConst<1> get() { return BoundedConst<1>(); }
|
cannam@147
|
549 };
|
cannam@147
|
550
|
cannam@147
|
551 template <uint value>
|
cannam@147
|
552 inline constexpr BoundedConst<value> bounded() {
|
cannam@147
|
553 return BoundedConst<value>();
|
cannam@147
|
554 }
|
cannam@147
|
555
|
cannam@147
|
556 template <uint64_t a, uint64_t b>
|
cannam@147
|
557 static constexpr uint64_t boundedAdd() {
|
cannam@147
|
558 static_assert(a + b >= a, "possible overflow detected");
|
cannam@147
|
559 return a + b;
|
cannam@147
|
560 }
|
cannam@147
|
561 template <uint64_t a, uint64_t b>
|
cannam@147
|
562 static constexpr uint64_t boundedSub() {
|
cannam@147
|
563 static_assert(a - b <= a, "possible underflow detected");
|
cannam@147
|
564 return a - b;
|
cannam@147
|
565 }
|
cannam@147
|
566 template <uint64_t a, uint64_t b>
|
cannam@147
|
567 static constexpr uint64_t boundedMul() {
|
cannam@147
|
568 static_assert(a * b / b == a, "possible overflow detected");
|
cannam@147
|
569 return a * b;
|
cannam@147
|
570 }
|
cannam@147
|
571 template <uint64_t a, uint64_t b>
|
cannam@147
|
572 static constexpr uint64_t boundedLShift() {
|
cannam@147
|
573 static_assert(a << b >= a, "possible overflow detected");
|
cannam@147
|
574 return a << b;
|
cannam@147
|
575 }
|
cannam@147
|
576
|
cannam@147
|
577 template <uint a, uint b>
|
cannam@147
|
578 inline constexpr BoundedConst<kj::min(a, b)> min(BoundedConst<a>, BoundedConst<b>) {
|
cannam@147
|
579 return bounded<kj::min(a, b)>();
|
cannam@147
|
580 }
|
cannam@147
|
581 template <uint a, uint b>
|
cannam@147
|
582 inline constexpr BoundedConst<kj::max(a, b)> max(BoundedConst<a>, BoundedConst<b>) {
|
cannam@147
|
583 return bounded<kj::max(a, b)>();
|
cannam@147
|
584 }
|
cannam@147
|
585 // We need to override min() and max() between constants because the ternary operator in the
|
cannam@147
|
586 // default implementation would complain.
|
cannam@147
|
587
|
cannam@147
|
588 // -------------------------------------------------------------------
|
cannam@147
|
589
|
cannam@147
|
590 template <uint64_t maxN, typename T>
|
cannam@147
|
591 class Bounded {
|
cannam@147
|
592 public:
|
cannam@147
|
593 static_assert(maxN <= T(kj::maxValue), "possible overflow detected");
|
cannam@147
|
594
|
cannam@147
|
595 Bounded() = default;
|
cannam@147
|
596
|
cannam@147
|
597 Bounded(const Bounded& other) = default;
|
cannam@147
|
598 template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
|
cannam@147
|
599 inline constexpr Bounded(OtherInt value): value(value) {
|
cannam@147
|
600 static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
|
cannam@147
|
601 }
|
cannam@147
|
602 template <uint64_t otherMax, typename OtherT>
|
cannam@147
|
603 inline constexpr Bounded(const Bounded<otherMax, OtherT>& other)
|
cannam@147
|
604 : value(other.value) {
|
cannam@147
|
605 static_assert(otherMax <= maxN, "possible overflow detected");
|
cannam@147
|
606 }
|
cannam@147
|
607 template <uint otherValue>
|
cannam@147
|
608 inline constexpr Bounded(BoundedConst<otherValue>)
|
cannam@147
|
609 : value(otherValue) {
|
cannam@147
|
610 static_assert(otherValue <= maxN, "overflow detected");
|
cannam@147
|
611 }
|
cannam@147
|
612
|
cannam@147
|
613 Bounded& operator=(const Bounded& other) = default;
|
cannam@147
|
614 template <typename OtherInt, typename = EnableIf<isIntegral<OtherInt>()>>
|
cannam@147
|
615 Bounded& operator=(OtherInt other) {
|
cannam@147
|
616 static_assert(OtherInt(maxValue) <= maxN, "possible overflow detected");
|
cannam@147
|
617 value = other;
|
cannam@147
|
618 return *this;
|
cannam@147
|
619 }
|
cannam@147
|
620 template <uint64_t otherMax, typename OtherT>
|
cannam@147
|
621 inline Bounded& operator=(const Bounded<otherMax, OtherT>& other) {
|
cannam@147
|
622 static_assert(otherMax <= maxN, "possible overflow detected");
|
cannam@147
|
623 value = other.value;
|
cannam@147
|
624 return *this;
|
cannam@147
|
625 }
|
cannam@147
|
626 template <uint otherValue>
|
cannam@147
|
627 inline Bounded& operator=(BoundedConst<otherValue>) {
|
cannam@147
|
628 static_assert(otherValue <= maxN, "overflow detected");
|
cannam@147
|
629 value = otherValue;
|
cannam@147
|
630 return *this;
|
cannam@147
|
631 }
|
cannam@147
|
632
|
cannam@147
|
633 inline constexpr T unwrap() const { return value; }
|
cannam@147
|
634
|
cannam@147
|
635 #define OP(op, newMax) \
|
cannam@147
|
636 template <uint64_t otherMax, typename otherT> \
|
cannam@147
|
637 inline constexpr Bounded<newMax, decltype(T() op otherT())> \
|
cannam@147
|
638 operator op(const Bounded<otherMax, otherT>& other) const { \
|
cannam@147
|
639 return Bounded<newMax, decltype(T() op otherT())>(value op other.value, unsafe); \
|
cannam@147
|
640 }
|
cannam@147
|
641 #define COMPARE_OP(op) \
|
cannam@147
|
642 template <uint64_t otherMax, typename OtherT> \
|
cannam@147
|
643 inline constexpr bool operator op(const Bounded<otherMax, OtherT>& other) const { \
|
cannam@147
|
644 return value op other.value; \
|
cannam@147
|
645 }
|
cannam@147
|
646
|
cannam@147
|
647 OP(+, (boundedAdd<maxN, otherMax>()))
|
cannam@147
|
648 OP(*, (boundedMul<maxN, otherMax>()))
|
cannam@147
|
649 OP(/, maxN)
|
cannam@147
|
650 OP(%, otherMax - 1)
|
cannam@147
|
651
|
cannam@147
|
652 // operator- is intentionally omitted because we mostly use this with unsigned types, and
|
cannam@147
|
653 // subtraction requires proof that subtrahend is not greater than the minuend.
|
cannam@147
|
654
|
cannam@147
|
655 COMPARE_OP(==)
|
cannam@147
|
656 COMPARE_OP(!=)
|
cannam@147
|
657 COMPARE_OP(< )
|
cannam@147
|
658 COMPARE_OP(> )
|
cannam@147
|
659 COMPARE_OP(<=)
|
cannam@147
|
660 COMPARE_OP(>=)
|
cannam@147
|
661
|
cannam@147
|
662 #undef OP
|
cannam@147
|
663 #undef COMPARE_OP
|
cannam@147
|
664
|
cannam@147
|
665 template <uint64_t newMax, typename ErrorFunc>
|
cannam@147
|
666 inline Bounded<newMax, T> assertMax(ErrorFunc&& func) const {
|
cannam@147
|
667 // Assert that the number is no more than `newMax`. Otherwise, call `func`.
|
cannam@147
|
668 static_assert(newMax < maxN, "this bounded size assertion is redundant");
|
cannam@147
|
669 if (KJ_UNLIKELY(value > newMax)) func();
|
cannam@147
|
670 return Bounded<newMax, T>(value, unsafe);
|
cannam@147
|
671 }
|
cannam@147
|
672
|
cannam@147
|
673 template <uint64_t otherMax, typename OtherT, typename ErrorFunc>
|
cannam@147
|
674 inline Bounded<maxN, decltype(T() - OtherT())> subtractChecked(
|
cannam@147
|
675 const Bounded<otherMax, OtherT>& other, ErrorFunc&& func) const {
|
cannam@147
|
676 // Subtract a number, calling func() if the result would underflow.
|
cannam@147
|
677 if (KJ_UNLIKELY(value < other.value)) func();
|
cannam@147
|
678 return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
|
cannam@147
|
679 }
|
cannam@147
|
680
|
cannam@147
|
681 template <uint otherValue, typename ErrorFunc>
|
cannam@147
|
682 inline Bounded<maxN - otherValue, T> subtractChecked(
|
cannam@147
|
683 BoundedConst<otherValue>, ErrorFunc&& func) const {
|
cannam@147
|
684 // Subtract a number, calling func() if the result would underflow.
|
cannam@147
|
685 static_assert(otherValue <= maxN, "underflow detected");
|
cannam@147
|
686 if (KJ_UNLIKELY(value < otherValue)) func();
|
cannam@147
|
687 return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
|
cannam@147
|
688 }
|
cannam@147
|
689
|
cannam@147
|
690 template <uint64_t otherMax, typename OtherT>
|
cannam@147
|
691 inline Maybe<Bounded<maxN, decltype(T() - OtherT())>> trySubtract(
|
cannam@147
|
692 const Bounded<otherMax, OtherT>& other) const {
|
cannam@147
|
693 // Subtract a number, calling func() if the result would underflow.
|
cannam@147
|
694 if (value < other.value) {
|
cannam@147
|
695 return nullptr;
|
cannam@147
|
696 } else {
|
cannam@147
|
697 return Bounded<maxN, decltype(T() - OtherT())>(value - other.value, unsafe);
|
cannam@147
|
698 }
|
cannam@147
|
699 }
|
cannam@147
|
700
|
cannam@147
|
701 template <uint otherValue>
|
cannam@147
|
702 inline Maybe<Bounded<maxN - otherValue, T>> trySubtract(BoundedConst<otherValue>) const {
|
cannam@147
|
703 // Subtract a number, calling func() if the result would underflow.
|
cannam@147
|
704 if (value < otherValue) {
|
cannam@147
|
705 return nullptr;
|
cannam@147
|
706 } else {
|
cannam@147
|
707 return Bounded<maxN - otherValue, T>(value - otherValue, unsafe);
|
cannam@147
|
708 }
|
cannam@147
|
709 }
|
cannam@147
|
710
|
cannam@147
|
711 inline constexpr Bounded(T value, decltype(unsafe)): value(value) {}
|
cannam@147
|
712 template <uint64_t otherMax, typename OtherT>
|
cannam@147
|
713 inline constexpr Bounded(Bounded<otherMax, OtherT> value, decltype(unsafe))
|
cannam@147
|
714 : value(value.value) {}
|
cannam@147
|
715 // Mainly for internal use.
|
cannam@147
|
716 //
|
cannam@147
|
717 // Only use these as a last resort, with ample commentary on why you think it's safe.
|
cannam@147
|
718
|
cannam@147
|
719 private:
|
cannam@147
|
720 T value;
|
cannam@147
|
721
|
cannam@147
|
722 template <uint64_t, typename>
|
cannam@147
|
723 friend class Bounded;
|
cannam@147
|
724 };
|
cannam@147
|
725
|
cannam@147
|
726 template <typename Number>
|
cannam@147
|
727 inline constexpr Bounded<Number(kj::maxValue), Number> bounded(Number value) {
|
cannam@147
|
728 return Bounded<Number(kj::maxValue), Number>(value, unsafe);
|
cannam@147
|
729 }
|
cannam@147
|
730
|
cannam@147
|
731 inline constexpr Bounded<1, uint8_t> bounded(bool value) {
|
cannam@147
|
732 return Bounded<1, uint8_t>(value, unsafe);
|
cannam@147
|
733 }
|
cannam@147
|
734
|
cannam@147
|
735 template <uint bits, typename Number>
|
cannam@147
|
736 inline constexpr Bounded<maxValueForBits<bits>(), Number> assumeBits(Number value) {
|
cannam@147
|
737 return Bounded<maxValueForBits<bits>(), Number>(value, unsafe);
|
cannam@147
|
738 }
|
cannam@147
|
739
|
cannam@147
|
740 template <uint bits, uint64_t maxN, typename T>
|
cannam@147
|
741 inline constexpr Bounded<maxValueForBits<bits>(), T> assumeBits(Bounded<maxN, T> value) {
|
cannam@147
|
742 return Bounded<maxValueForBits<bits>(), T>(value, unsafe);
|
cannam@147
|
743 }
|
cannam@147
|
744
|
cannam@147
|
745 template <uint bits, typename Number, typename Unit>
|
cannam@147
|
746 inline constexpr auto assumeBits(Quantity<Number, Unit> value)
|
cannam@147
|
747 -> Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit> {
|
cannam@147
|
748 return Quantity<decltype(assumeBits<bits>(value / unit<Quantity<Number, Unit>>())), Unit>(
|
cannam@147
|
749 assumeBits<bits>(value / unit<Quantity<Number, Unit>>()), unsafe);
|
cannam@147
|
750 }
|
cannam@147
|
751
|
cannam@147
|
752 template <uint64_t maxN, typename Number>
|
cannam@147
|
753 inline constexpr Bounded<maxN, Number> assumeMax(Number value) {
|
cannam@147
|
754 return Bounded<maxN, Number>(value, unsafe);
|
cannam@147
|
755 }
|
cannam@147
|
756
|
cannam@147
|
757 template <uint64_t newMaxN, uint64_t maxN, typename T>
|
cannam@147
|
758 inline constexpr Bounded<newMaxN, T> assumeMax(Bounded<maxN, T> value) {
|
cannam@147
|
759 return Bounded<newMaxN, T>(value, unsafe);
|
cannam@147
|
760 }
|
cannam@147
|
761
|
cannam@147
|
762 template <uint64_t maxN, typename Number, typename Unit>
|
cannam@147
|
763 inline constexpr auto assumeMax(Quantity<Number, Unit> value)
|
cannam@147
|
764 -> Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit> {
|
cannam@147
|
765 return Quantity<decltype(assumeMax<maxN>(value / unit<Quantity<Number, Unit>>())), Unit>(
|
cannam@147
|
766 assumeMax<maxN>(value / unit<Quantity<Number, Unit>>()), unsafe);
|
cannam@147
|
767 }
|
cannam@147
|
768
|
cannam@147
|
769 template <uint maxN, typename Number>
|
cannam@147
|
770 inline constexpr Bounded<maxN, Number> assumeMax(BoundedConst<maxN>, Number value) {
|
cannam@147
|
771 return assumeMax<maxN>(value);
|
cannam@147
|
772 }
|
cannam@147
|
773
|
cannam@147
|
774 template <uint newMaxN, uint64_t maxN, typename T>
|
cannam@147
|
775 inline constexpr Bounded<newMaxN, T> assumeMax(BoundedConst<maxN>, Bounded<maxN, T> value) {
|
cannam@147
|
776 return assumeMax<maxN>(value);
|
cannam@147
|
777 }
|
cannam@147
|
778
|
cannam@147
|
779 template <uint maxN, typename Number, typename Unit>
|
cannam@147
|
780 inline constexpr auto assumeMax(Quantity<BoundedConst<maxN>, Unit>, Quantity<Number, Unit> value)
|
cannam@147
|
781 -> decltype(assumeMax<maxN>(value)) {
|
cannam@147
|
782 return assumeMax<maxN>(value);
|
cannam@147
|
783 }
|
cannam@147
|
784
|
cannam@147
|
785 template <uint64_t newMax, uint64_t maxN, typename T, typename ErrorFunc>
|
cannam@147
|
786 inline Bounded<newMax, T> assertMax(Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
|
cannam@147
|
787 // Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
|
cannam@147
|
788 // if not.
|
cannam@147
|
789 static_assert(newMax < maxN, "this bounded size assertion is redundant");
|
cannam@147
|
790 return value.template assertMax<newMax>(kj::fwd<ErrorFunc>(errorFunc));
|
cannam@147
|
791 }
|
cannam@147
|
792
|
cannam@147
|
793 template <uint64_t newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
|
cannam@147
|
794 inline Quantity<Bounded<newMax, T>, Unit> assertMax(
|
cannam@147
|
795 Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
|
cannam@147
|
796 // Assert that the bounded value is less than or equal to the given maximum, calling errorFunc()
|
cannam@147
|
797 // if not.
|
cannam@147
|
798 static_assert(newMax < maxN, "this bounded size assertion is redundant");
|
cannam@147
|
799 return (value / unit<decltype(value)>()).template assertMax<newMax>(
|
cannam@147
|
800 kj::fwd<ErrorFunc>(errorFunc)) * unit<decltype(value)>();
|
cannam@147
|
801 }
|
cannam@147
|
802
|
cannam@147
|
803 template <uint newMax, uint64_t maxN, typename T, typename ErrorFunc>
|
cannam@147
|
804 inline Bounded<newMax, T> assertMax(
|
cannam@147
|
805 BoundedConst<newMax>, Bounded<maxN, T> value, ErrorFunc&& errorFunc) {
|
cannam@147
|
806 return assertMax<newMax>(value, kj::mv(errorFunc));
|
cannam@147
|
807 }
|
cannam@147
|
808
|
cannam@147
|
809 template <uint newMax, uint64_t maxN, typename T, typename Unit, typename ErrorFunc>
|
cannam@147
|
810 inline Quantity<Bounded<newMax, T>, Unit> assertMax(
|
cannam@147
|
811 Quantity<BoundedConst<newMax>, Unit>,
|
cannam@147
|
812 Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc) {
|
cannam@147
|
813 return assertMax<newMax>(value, kj::mv(errorFunc));
|
cannam@147
|
814 }
|
cannam@147
|
815
|
cannam@147
|
816 template <uint64_t newBits, uint64_t maxN, typename T, typename ErrorFunc = ThrowOverflow>
|
cannam@147
|
817 inline Bounded<maxValueForBits<newBits>(), T> assertMaxBits(
|
cannam@147
|
818 Bounded<maxN, T> value, ErrorFunc&& errorFunc = ErrorFunc()) {
|
cannam@147
|
819 // Assert that the bounded value requires no more than the given number of bits, calling
|
cannam@147
|
820 // errorFunc() if not.
|
cannam@147
|
821 return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
|
cannam@147
|
822 }
|
cannam@147
|
823
|
cannam@147
|
824 template <uint64_t newBits, uint64_t maxN, typename T, typename Unit,
|
cannam@147
|
825 typename ErrorFunc = ThrowOverflow>
|
cannam@147
|
826 inline Quantity<Bounded<maxValueForBits<newBits>(), T>, Unit> assertMaxBits(
|
cannam@147
|
827 Quantity<Bounded<maxN, T>, Unit> value, ErrorFunc&& errorFunc = ErrorFunc()) {
|
cannam@147
|
828 // Assert that the bounded value requires no more than the given number of bits, calling
|
cannam@147
|
829 // errorFunc() if not.
|
cannam@147
|
830 return assertMax<maxValueForBits<newBits>()>(value, kj::fwd<ErrorFunc>(errorFunc));
|
cannam@147
|
831 }
|
cannam@147
|
832
|
cannam@147
|
833 template <typename newT, uint64_t maxN, typename T>
|
cannam@147
|
834 inline constexpr Bounded<maxN, newT> upgradeBound(Bounded<maxN, T> value) {
|
cannam@147
|
835 return value;
|
cannam@147
|
836 }
|
cannam@147
|
837
|
cannam@147
|
838 template <typename newT, uint64_t maxN, typename T, typename Unit>
|
cannam@147
|
839 inline constexpr Quantity<Bounded<maxN, newT>, Unit> upgradeBound(
|
cannam@147
|
840 Quantity<Bounded<maxN, T>, Unit> value) {
|
cannam@147
|
841 return value;
|
cannam@147
|
842 }
|
cannam@147
|
843
|
cannam@147
|
844 template <uint64_t maxN, typename T, typename Other, typename ErrorFunc>
|
cannam@147
|
845 inline auto subtractChecked(Bounded<maxN, T> value, Other other, ErrorFunc&& errorFunc)
|
cannam@147
|
846 -> decltype(value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc))) {
|
cannam@147
|
847 return value.subtractChecked(other, kj::fwd<ErrorFunc>(errorFunc));
|
cannam@147
|
848 }
|
cannam@147
|
849
|
cannam@147
|
850 template <typename T, typename U, typename Unit, typename ErrorFunc>
|
cannam@147
|
851 inline auto subtractChecked(Quantity<T, Unit> value, Quantity<U, Unit> other, ErrorFunc&& errorFunc)
|
cannam@147
|
852 -> Quantity<decltype(subtractChecked(T(), U(), kj::fwd<ErrorFunc>(errorFunc))), Unit> {
|
cannam@147
|
853 return subtractChecked(value / unit<Quantity<T, Unit>>(),
|
cannam@147
|
854 other / unit<Quantity<U, Unit>>(),
|
cannam@147
|
855 kj::fwd<ErrorFunc>(errorFunc))
|
cannam@147
|
856 * unit<Quantity<T, Unit>>();
|
cannam@147
|
857 }
|
cannam@147
|
858
|
cannam@147
|
859 template <uint64_t maxN, typename T, typename Other>
|
cannam@147
|
860 inline auto trySubtract(Bounded<maxN, T> value, Other other)
|
cannam@147
|
861 -> decltype(value.trySubtract(other)) {
|
cannam@147
|
862 return value.trySubtract(other);
|
cannam@147
|
863 }
|
cannam@147
|
864
|
cannam@147
|
865 template <typename T, typename U, typename Unit>
|
cannam@147
|
866 inline auto trySubtract(Quantity<T, Unit> value, Quantity<U, Unit> other)
|
cannam@147
|
867 -> Maybe<Quantity<decltype(subtractChecked(T(), U(), int())), Unit>> {
|
cannam@147
|
868 return trySubtract(value / unit<Quantity<T, Unit>>(),
|
cannam@147
|
869 other / unit<Quantity<U, Unit>>())
|
cannam@147
|
870 .map([](decltype(subtractChecked(T(), U(), int())) x) {
|
cannam@147
|
871 return x * unit<Quantity<T, Unit>>();
|
cannam@147
|
872 });
|
cannam@147
|
873 }
|
cannam@147
|
874
|
cannam@147
|
875 template <uint64_t aN, uint64_t bN, typename A, typename B>
|
cannam@147
|
876 inline constexpr Bounded<kj::min(aN, bN), WiderType<A, B>>
|
cannam@147
|
877 min(Bounded<aN, A> a, Bounded<bN, B> b) {
|
cannam@147
|
878 return Bounded<kj::min(aN, bN), WiderType<A, B>>(kj::min(a.unwrap(), b.unwrap()), unsafe);
|
cannam@147
|
879 }
|
cannam@147
|
880 template <uint64_t aN, uint64_t bN, typename A, typename B>
|
cannam@147
|
881 inline constexpr Bounded<kj::max(aN, bN), WiderType<A, B>>
|
cannam@147
|
882 max(Bounded<aN, A> a, Bounded<bN, B> b) {
|
cannam@147
|
883 return Bounded<kj::max(aN, bN), WiderType<A, B>>(kj::max(a.unwrap(), b.unwrap()), unsafe);
|
cannam@147
|
884 }
|
cannam@147
|
885 // We need to override min() and max() because:
|
cannam@147
|
886 // 1) WiderType<> might not choose the correct bounds.
|
cannam@147
|
887 // 2) One of the two sides of the ternary operator in the default implementation would fail to
|
cannam@147
|
888 // typecheck even though it is OK in practice.
|
cannam@147
|
889
|
cannam@147
|
890 // -------------------------------------------------------------------
|
cannam@147
|
891 // Operators between Bounded and BoundedConst
|
cannam@147
|
892
|
cannam@147
|
893 #define OP(op, newMax) \
|
cannam@147
|
894 template <uint64_t maxN, uint cvalue, typename T> \
|
cannam@147
|
895 inline constexpr Bounded<(newMax), decltype(T() op uint())> operator op( \
|
cannam@147
|
896 Bounded<maxN, T> value, BoundedConst<cvalue>) { \
|
cannam@147
|
897 return Bounded<(newMax), decltype(T() op uint())>(value.unwrap() op cvalue, unsafe); \
|
cannam@147
|
898 }
|
cannam@147
|
899
|
cannam@147
|
900 #define REVERSE_OP(op, newMax) \
|
cannam@147
|
901 template <uint64_t maxN, uint cvalue, typename T> \
|
cannam@147
|
902 inline constexpr Bounded<(newMax), decltype(uint() op T())> operator op( \
|
cannam@147
|
903 BoundedConst<cvalue>, Bounded<maxN, T> value) { \
|
cannam@147
|
904 return Bounded<(newMax), decltype(uint() op T())>(cvalue op value.unwrap(), unsafe); \
|
cannam@147
|
905 }
|
cannam@147
|
906
|
cannam@147
|
907 #define COMPARE_OP(op) \
|
cannam@147
|
908 template <uint64_t maxN, uint cvalue, typename T> \
|
cannam@147
|
909 inline constexpr bool operator op(Bounded<maxN, T> value, BoundedConst<cvalue>) { \
|
cannam@147
|
910 return value.unwrap() op cvalue; \
|
cannam@147
|
911 } \
|
cannam@147
|
912 template <uint64_t maxN, uint cvalue, typename T> \
|
cannam@147
|
913 inline constexpr bool operator op(BoundedConst<cvalue>, Bounded<maxN, T> value) { \
|
cannam@147
|
914 return cvalue op value.unwrap(); \
|
cannam@147
|
915 }
|
cannam@147
|
916
|
cannam@147
|
917 OP(+, (boundedAdd<maxN, cvalue>()))
|
cannam@147
|
918 REVERSE_OP(+, (boundedAdd<maxN, cvalue>()))
|
cannam@147
|
919
|
cannam@147
|
920 OP(*, (boundedMul<maxN, cvalue>()))
|
cannam@147
|
921 REVERSE_OP(*, (boundedAdd<maxN, cvalue>()))
|
cannam@147
|
922
|
cannam@147
|
923 OP(/, maxN / cvalue)
|
cannam@147
|
924 REVERSE_OP(/, cvalue) // denominator could be 1
|
cannam@147
|
925
|
cannam@147
|
926 OP(%, cvalue - 1)
|
cannam@147
|
927 REVERSE_OP(%, maxN - 1)
|
cannam@147
|
928
|
cannam@147
|
929 OP(<<, (boundedLShift<maxN, cvalue>()))
|
cannam@147
|
930 REVERSE_OP(<<, (boundedLShift<cvalue, maxN>()))
|
cannam@147
|
931
|
cannam@147
|
932 OP(>>, maxN >> cvalue)
|
cannam@147
|
933 REVERSE_OP(>>, cvalue >> maxN)
|
cannam@147
|
934
|
cannam@147
|
935 OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)
|
cannam@147
|
936 REVERSE_OP(&, maxValueForBits<bitCount<maxN>()>() & cvalue)
|
cannam@147
|
937
|
cannam@147
|
938 OP(|, maxN | cvalue)
|
cannam@147
|
939 REVERSE_OP(|, maxN | cvalue)
|
cannam@147
|
940
|
cannam@147
|
941 COMPARE_OP(==)
|
cannam@147
|
942 COMPARE_OP(!=)
|
cannam@147
|
943 COMPARE_OP(< )
|
cannam@147
|
944 COMPARE_OP(> )
|
cannam@147
|
945 COMPARE_OP(<=)
|
cannam@147
|
946 COMPARE_OP(>=)
|
cannam@147
|
947
|
cannam@147
|
948 #undef OP
|
cannam@147
|
949 #undef REVERSE_OP
|
cannam@147
|
950 #undef COMPARE_OP
|
cannam@147
|
951
|
cannam@147
|
952 template <uint64_t maxN, uint cvalue, typename T>
|
cannam@147
|
953 inline constexpr Bounded<cvalue, decltype(uint() - T())>
|
cannam@147
|
954 operator-(BoundedConst<cvalue>, Bounded<maxN, T> value) {
|
cannam@147
|
955 // We allow subtraction of a variable from a constant only if the constant is greater than or
|
cannam@147
|
956 // equal to the maximum possible value of the variable. Since the variable could be zero, the
|
cannam@147
|
957 // result can be as large as the constant.
|
cannam@147
|
958 //
|
cannam@147
|
959 // We do not allow subtraction of a constant from a variable because there's never a guarantee it
|
cannam@147
|
960 // won't underflow (unless the constant is zero, which is silly).
|
cannam@147
|
961 static_assert(cvalue >= maxN, "possible underflow detected");
|
cannam@147
|
962 return Bounded<cvalue, decltype(uint() - T())>(cvalue - value.unwrap(), unsafe);
|
cannam@147
|
963 }
|
cannam@147
|
964
|
cannam@147
|
965 template <uint64_t aN, uint b, typename A>
|
cannam@147
|
966 inline constexpr Bounded<kj::min(aN, b), A> min(Bounded<aN, A> a, BoundedConst<b>) {
|
cannam@147
|
967 return Bounded<kj::min(aN, b), A>(kj::min(b, a.unwrap()), unsafe);
|
cannam@147
|
968 }
|
cannam@147
|
969 template <uint64_t aN, uint b, typename A>
|
cannam@147
|
970 inline constexpr Bounded<kj::min(aN, b), A> min(BoundedConst<b>, Bounded<aN, A> a) {
|
cannam@147
|
971 return Bounded<kj::min(aN, b), A>(kj::min(a.unwrap(), b), unsafe);
|
cannam@147
|
972 }
|
cannam@147
|
973 template <uint64_t aN, uint b, typename A>
|
cannam@147
|
974 inline constexpr Bounded<kj::max(aN, b), A> max(Bounded<aN, A> a, BoundedConst<b>) {
|
cannam@147
|
975 return Bounded<kj::max(aN, b), A>(kj::max(b, a.unwrap()), unsafe);
|
cannam@147
|
976 }
|
cannam@147
|
977 template <uint64_t aN, uint b, typename A>
|
cannam@147
|
978 inline constexpr Bounded<kj::max(aN, b), A> max(BoundedConst<b>, Bounded<aN, A> a) {
|
cannam@147
|
979 return Bounded<kj::max(aN, b), A>(kj::max(a.unwrap(), b), unsafe);
|
cannam@147
|
980 }
|
cannam@147
|
981 // We need to override min() between a Bounded and a constant since:
|
cannam@147
|
982 // 1) WiderType<> might choose BoundedConst over a 1-byte Bounded, which is wrong.
|
cannam@147
|
983 // 2) To clamp the bounds of the output type.
|
cannam@147
|
984 // 3) Same ternary operator typechecking issues.
|
cannam@147
|
985
|
cannam@147
|
986 // -------------------------------------------------------------------
|
cannam@147
|
987
|
cannam@147
|
988 template <uint64_t maxN, typename T>
|
cannam@147
|
989 class SafeUnwrapper {
|
cannam@147
|
990 public:
|
cannam@147
|
991 inline explicit constexpr SafeUnwrapper(Bounded<maxN, T> value): value(value.unwrap()) {}
|
cannam@147
|
992
|
cannam@147
|
993 template <typename U, typename = EnableIf<isIntegral<U>()>>
|
cannam@147
|
994 inline constexpr operator U() const {
|
cannam@147
|
995 static_assert(maxN <= U(maxValue), "possible truncation detected");
|
cannam@147
|
996 return value;
|
cannam@147
|
997 }
|
cannam@147
|
998
|
cannam@147
|
999 inline constexpr operator bool() const {
|
cannam@147
|
1000 static_assert(maxN <= 1, "possible truncation detected");
|
cannam@147
|
1001 return value;
|
cannam@147
|
1002 }
|
cannam@147
|
1003
|
cannam@147
|
1004 private:
|
cannam@147
|
1005 T value;
|
cannam@147
|
1006 };
|
cannam@147
|
1007
|
cannam@147
|
1008 template <uint64_t maxN, typename T>
|
cannam@147
|
1009 inline constexpr SafeUnwrapper<maxN, T> unbound(Bounded<maxN, T> bounded) {
|
cannam@147
|
1010 // Unwraps the bounded value, returning a value that can be implicitly cast to any integer type.
|
cannam@147
|
1011 // If this implicit cast could truncate, a compile-time error will be raised.
|
cannam@147
|
1012 return SafeUnwrapper<maxN, T>(bounded);
|
cannam@147
|
1013 }
|
cannam@147
|
1014
|
cannam@147
|
1015 template <uint64_t value>
|
cannam@147
|
1016 class SafeConstUnwrapper {
|
cannam@147
|
1017 public:
|
cannam@147
|
1018 template <typename T, typename = EnableIf<isIntegral<T>()>>
|
cannam@147
|
1019 inline constexpr operator T() const {
|
cannam@147
|
1020 static_assert(value <= T(maxValue), "this operation will truncate");
|
cannam@147
|
1021 return value;
|
cannam@147
|
1022 }
|
cannam@147
|
1023
|
cannam@147
|
1024 inline constexpr operator bool() const {
|
cannam@147
|
1025 static_assert(value <= 1, "this operation will truncate");
|
cannam@147
|
1026 return value;
|
cannam@147
|
1027 }
|
cannam@147
|
1028 };
|
cannam@147
|
1029
|
cannam@147
|
1030 template <uint value>
|
cannam@147
|
1031 inline constexpr SafeConstUnwrapper<value> unbound(BoundedConst<value>) {
|
cannam@147
|
1032 return SafeConstUnwrapper<value>();
|
cannam@147
|
1033 }
|
cannam@147
|
1034
|
cannam@147
|
1035 template <typename T, typename U>
|
cannam@147
|
1036 inline constexpr T unboundAs(U value) {
|
cannam@147
|
1037 return unbound(value);
|
cannam@147
|
1038 }
|
cannam@147
|
1039
|
cannam@147
|
1040 template <uint64_t requestedMax, uint64_t maxN, typename T>
|
cannam@147
|
1041 inline constexpr T unboundMax(Bounded<maxN, T> value) {
|
cannam@147
|
1042 // Explicitly ungaurd expecting a value that is at most `maxN`.
|
cannam@147
|
1043 static_assert(maxN <= requestedMax, "possible overflow detected");
|
cannam@147
|
1044 return value.unwrap();
|
cannam@147
|
1045 }
|
cannam@147
|
1046
|
cannam@147
|
1047 template <uint64_t requestedMax, uint value>
|
cannam@147
|
1048 inline constexpr uint unboundMax(BoundedConst<value>) {
|
cannam@147
|
1049 // Explicitly ungaurd expecting a value that is at most `maxN`.
|
cannam@147
|
1050 static_assert(value <= requestedMax, "overflow detected");
|
cannam@147
|
1051 return value;
|
cannam@147
|
1052 }
|
cannam@147
|
1053
|
cannam@147
|
1054 template <uint bits, typename T>
|
cannam@147
|
1055 inline constexpr auto unboundMaxBits(T value) ->
|
cannam@147
|
1056 decltype(unboundMax<maxValueForBits<bits>()>(value)) {
|
cannam@147
|
1057 // Explicitly ungaurd expecting a value that fits into `bits` bits.
|
cannam@147
|
1058 return unboundMax<maxValueForBits<bits>()>(value);
|
cannam@147
|
1059 }
|
cannam@147
|
1060
|
cannam@147
|
1061 #define OP(op) \
|
cannam@147
|
1062 template <uint64_t maxN, typename T, typename U> \
|
cannam@147
|
1063 inline constexpr auto operator op(T a, SafeUnwrapper<maxN, U> b) -> decltype(a op (T)b) { \
|
cannam@147
|
1064 return a op (AtLeastUInt<sizeof(T)*8>)b; \
|
cannam@147
|
1065 } \
|
cannam@147
|
1066 template <uint64_t maxN, typename T, typename U> \
|
cannam@147
|
1067 inline constexpr auto operator op(SafeUnwrapper<maxN, U> b, T a) -> decltype((T)b op a) { \
|
cannam@147
|
1068 return (AtLeastUInt<sizeof(T)*8>)b op a; \
|
cannam@147
|
1069 } \
|
cannam@147
|
1070 template <uint64_t value, typename T> \
|
cannam@147
|
1071 inline constexpr auto operator op(T a, SafeConstUnwrapper<value> b) -> decltype(a op (T)b) { \
|
cannam@147
|
1072 return a op (AtLeastUInt<sizeof(T)*8>)b; \
|
cannam@147
|
1073 } \
|
cannam@147
|
1074 template <uint64_t value, typename T> \
|
cannam@147
|
1075 inline constexpr auto operator op(SafeConstUnwrapper<value> b, T a) -> decltype((T)b op a) { \
|
cannam@147
|
1076 return (AtLeastUInt<sizeof(T)*8>)b op a; \
|
cannam@147
|
1077 }
|
cannam@147
|
1078
|
cannam@147
|
1079 OP(+)
|
cannam@147
|
1080 OP(-)
|
cannam@147
|
1081 OP(*)
|
cannam@147
|
1082 OP(/)
|
cannam@147
|
1083 OP(%)
|
cannam@147
|
1084 OP(<<)
|
cannam@147
|
1085 OP(>>)
|
cannam@147
|
1086 OP(&)
|
cannam@147
|
1087 OP(|)
|
cannam@147
|
1088 OP(==)
|
cannam@147
|
1089 OP(!=)
|
cannam@147
|
1090 OP(<=)
|
cannam@147
|
1091 OP(>=)
|
cannam@147
|
1092 OP(<)
|
cannam@147
|
1093 OP(>)
|
cannam@147
|
1094
|
cannam@147
|
1095 #undef OP
|
cannam@147
|
1096
|
cannam@147
|
1097 // -------------------------------------------------------------------
|
cannam@147
|
1098
|
cannam@147
|
1099 template <uint64_t maxN, typename T>
|
cannam@147
|
1100 class Range<Bounded<maxN, T>> {
|
cannam@147
|
1101 public:
|
cannam@147
|
1102 inline constexpr Range(Bounded<maxN, T> begin, Bounded<maxN, T> end)
|
cannam@147
|
1103 : inner(unbound(begin), unbound(end)) {}
|
cannam@147
|
1104 inline explicit constexpr Range(Bounded<maxN, T> end)
|
cannam@147
|
1105 : inner(unbound(end)) {}
|
cannam@147
|
1106
|
cannam@147
|
1107 class Iterator {
|
cannam@147
|
1108 public:
|
cannam@147
|
1109 Iterator() = default;
|
cannam@147
|
1110 inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}
|
cannam@147
|
1111
|
cannam@147
|
1112 inline Bounded<maxN, T> operator* () const { return Bounded<maxN, T>(*inner, unsafe); }
|
cannam@147
|
1113 inline Iterator& operator++() { ++inner; return *this; }
|
cannam@147
|
1114
|
cannam@147
|
1115 inline bool operator==(const Iterator& other) const { return inner == other.inner; }
|
cannam@147
|
1116 inline bool operator!=(const Iterator& other) const { return inner != other.inner; }
|
cannam@147
|
1117
|
cannam@147
|
1118 private:
|
cannam@147
|
1119 typename Range<T>::Iterator inner;
|
cannam@147
|
1120 };
|
cannam@147
|
1121
|
cannam@147
|
1122 inline Iterator begin() const { return Iterator(inner.begin()); }
|
cannam@147
|
1123 inline Iterator end() const { return Iterator(inner.end()); }
|
cannam@147
|
1124
|
cannam@147
|
1125 private:
|
cannam@147
|
1126 Range<T> inner;
|
cannam@147
|
1127 };
|
cannam@147
|
1128
|
cannam@147
|
1129 template <typename T, typename U>
|
cannam@147
|
1130 class Range<Quantity<T, U>> {
|
cannam@147
|
1131 public:
|
cannam@147
|
1132 inline constexpr Range(Quantity<T, U> begin, Quantity<T, U> end)
|
cannam@147
|
1133 : inner(begin / unit<Quantity<T, U>>(), end / unit<Quantity<T, U>>()) {}
|
cannam@147
|
1134 inline explicit constexpr Range(Quantity<T, U> end)
|
cannam@147
|
1135 : inner(end / unit<Quantity<T, U>>()) {}
|
cannam@147
|
1136
|
cannam@147
|
1137 class Iterator {
|
cannam@147
|
1138 public:
|
cannam@147
|
1139 Iterator() = default;
|
cannam@147
|
1140 inline explicit Iterator(typename Range<T>::Iterator inner): inner(inner) {}
|
cannam@147
|
1141
|
cannam@147
|
1142 inline Quantity<T, U> operator* () const { return *inner * unit<Quantity<T, U>>(); }
|
cannam@147
|
1143 inline Iterator& operator++() { ++inner; return *this; }
|
cannam@147
|
1144
|
cannam@147
|
1145 inline bool operator==(const Iterator& other) const { return inner == other.inner; }
|
cannam@147
|
1146 inline bool operator!=(const Iterator& other) const { return inner != other.inner; }
|
cannam@147
|
1147
|
cannam@147
|
1148 private:
|
cannam@147
|
1149 typename Range<T>::Iterator inner;
|
cannam@147
|
1150 };
|
cannam@147
|
1151
|
cannam@147
|
1152 inline Iterator begin() const { return Iterator(inner.begin()); }
|
cannam@147
|
1153 inline Iterator end() const { return Iterator(inner.end()); }
|
cannam@147
|
1154
|
cannam@147
|
1155 private:
|
cannam@147
|
1156 Range<T> inner;
|
cannam@147
|
1157 };
|
cannam@147
|
1158
|
cannam@147
|
1159 template <uint value>
|
cannam@147
|
1160 inline constexpr Range<Bounded<value, uint>> zeroTo(BoundedConst<value> end) {
|
cannam@147
|
1161 return Range<Bounded<value, uint>>(end);
|
cannam@147
|
1162 }
|
cannam@147
|
1163
|
cannam@147
|
1164 template <uint value, typename Unit>
|
cannam@147
|
1165 inline constexpr Range<Quantity<Bounded<value, uint>, Unit>>
|
cannam@147
|
1166 zeroTo(Quantity<BoundedConst<value>, Unit> end) {
|
cannam@147
|
1167 return Range<Quantity<Bounded<value, uint>, Unit>>(end);
|
cannam@147
|
1168 }
|
cannam@147
|
1169
|
cannam@147
|
1170 } // namespace kj
|
cannam@147
|
1171
|
cannam@147
|
1172 #endif // KJ_UNITS_H_
|