cannam@147
|
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
cannam@147
|
2 // Licensed under the MIT License:
|
cannam@147
|
3 //
|
cannam@147
|
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
|
cannam@147
|
5 // of this software and associated documentation files (the "Software"), to deal
|
cannam@147
|
6 // in the Software without restriction, including without limitation the rights
|
cannam@147
|
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
cannam@147
|
8 // copies of the Software, and to permit persons to whom the Software is
|
cannam@147
|
9 // furnished to do so, subject to the following conditions:
|
cannam@147
|
10 //
|
cannam@147
|
11 // The above copyright notice and this permission notice shall be included in
|
cannam@147
|
12 // all copies or substantial portions of the Software.
|
cannam@147
|
13 //
|
cannam@147
|
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
cannam@147
|
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
cannam@147
|
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
cannam@147
|
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
cannam@147
|
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
cannam@147
|
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
cannam@147
|
20 // THE SOFTWARE.
|
cannam@147
|
21
|
cannam@147
|
22 // This file defines a notion of tuples that is simpler that `std::tuple`. It works as follows:
|
cannam@147
|
23 // - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
|
cannam@147
|
24 // - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves
|
cannam@147
|
25 // tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
|
cannam@147
|
26 // - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
|
cannam@147
|
27 // - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
|
cannam@147
|
28 // in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
|
cannam@147
|
29 //
|
cannam@147
|
30 // Note that:
|
cannam@147
|
31 // - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the
|
cannam@147
|
32 // type.
|
cannam@147
|
33 // - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
|
cannam@147
|
34 // flattened.
|
cannam@147
|
35 // - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
|
cannam@147
|
36 // with type inference and `tuple()`.
|
cannam@147
|
37
|
cannam@147
|
38 #ifndef KJ_TUPLE_H_
|
cannam@147
|
39 #define KJ_TUPLE_H_
|
cannam@147
|
40
|
cannam@147
|
41 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
|
cannam@147
|
42 #pragma GCC system_header
|
cannam@147
|
43 #endif
|
cannam@147
|
44
|
cannam@147
|
45 #include "common.h"
|
cannam@147
|
46
|
cannam@147
|
47 namespace kj {
|
cannam@147
|
48 namespace _ { // private
|
cannam@147
|
49
|
cannam@147
|
50 template <size_t index, typename... T>
|
cannam@147
|
51 struct TypeByIndex_;
|
cannam@147
|
52 template <typename First, typename... Rest>
|
cannam@147
|
53 struct TypeByIndex_<0, First, Rest...> {
|
cannam@147
|
54 typedef First Type;
|
cannam@147
|
55 };
|
cannam@147
|
56 template <size_t index, typename First, typename... Rest>
|
cannam@147
|
57 struct TypeByIndex_<index, First, Rest...>
|
cannam@147
|
58 : public TypeByIndex_<index - 1, Rest...> {};
|
cannam@147
|
59 template <size_t index>
|
cannam@147
|
60 struct TypeByIndex_<index> {
|
cannam@147
|
61 static_assert(index != index, "Index out-of-range.");
|
cannam@147
|
62 };
|
cannam@147
|
63 template <size_t index, typename... T>
|
cannam@147
|
64 using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
|
cannam@147
|
65 // Chose a particular type out of a list of types, by index.
|
cannam@147
|
66
|
cannam@147
|
67 template <size_t... s>
|
cannam@147
|
68 struct Indexes {};
|
cannam@147
|
69 // Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
|
cannam@147
|
70 // templates against them and unpack them with '...'.
|
cannam@147
|
71
|
cannam@147
|
72 template <size_t end, size_t... prefix>
|
cannam@147
|
73 struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
|
cannam@147
|
74 template <size_t... prefix>
|
cannam@147
|
75 struct MakeIndexes_<0, prefix...> {
|
cannam@147
|
76 typedef Indexes<prefix...> Type;
|
cannam@147
|
77 };
|
cannam@147
|
78 template <size_t end>
|
cannam@147
|
79 using MakeIndexes = typename MakeIndexes_<end>::Type;
|
cannam@147
|
80 // Equivalent to Indexes<0, 1, 2, ..., end>.
|
cannam@147
|
81
|
cannam@147
|
82 template <typename... T>
|
cannam@147
|
83 class Tuple;
|
cannam@147
|
84 template <size_t index, typename... U>
|
cannam@147
|
85 inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
|
cannam@147
|
86 template <size_t index, typename... U>
|
cannam@147
|
87 inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
|
cannam@147
|
88 template <size_t index, typename... U>
|
cannam@147
|
89 inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
|
cannam@147
|
90
|
cannam@147
|
91 template <uint index, typename T>
|
cannam@147
|
92 struct TupleElement {
|
cannam@147
|
93 // Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits
|
cannam@147
|
94 // from a TupleElement for each element, which is more efficient than a recursive definition.
|
cannam@147
|
95
|
cannam@147
|
96 T value;
|
cannam@147
|
97 TupleElement() = default;
|
cannam@147
|
98 constexpr inline TupleElement(const T& value): value(value) {}
|
cannam@147
|
99 constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
|
cannam@147
|
100 };
|
cannam@147
|
101
|
cannam@147
|
102 template <uint index, typename T>
|
cannam@147
|
103 struct TupleElement<index, T&> {
|
cannam@147
|
104 // If tuples contained references, one of the following would have to be true:
|
cannam@147
|
105 // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is
|
cannam@147
|
106 // probably not what you expected.
|
cannam@147
|
107 // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned
|
cannam@147
|
108 // Tuple<Foo, Bar>.
|
cannam@147
|
109 static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references.");
|
cannam@147
|
110 };
|
cannam@147
|
111
|
cannam@147
|
112 template <uint index, typename... T>
|
cannam@147
|
113 struct TupleElement<index, Tuple<T...>> {
|
cannam@147
|
114 static_assert(sizeof(Tuple<T...>*) == 0,
|
cannam@147
|
115 "Tuples cannot contain other tuples -- they should be flattened.");
|
cannam@147
|
116 };
|
cannam@147
|
117
|
cannam@147
|
118 template <typename Indexes, typename... Types>
|
cannam@147
|
119 struct TupleImpl;
|
cannam@147
|
120
|
cannam@147
|
121 template <size_t... indexes, typename... Types>
|
cannam@147
|
122 struct TupleImpl<Indexes<indexes...>, Types...>
|
cannam@147
|
123 : public TupleElement<indexes, Types>... {
|
cannam@147
|
124 // Implementation of Tuple. The only reason we need this rather than rolling this into class
|
cannam@147
|
125 // Tuple (below) is so that we can get "indexes" as an unpackable list.
|
cannam@147
|
126
|
cannam@147
|
127 static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
|
cannam@147
|
128
|
cannam@147
|
129 template <typename... Params>
|
cannam@147
|
130 inline TupleImpl(Params&&... params)
|
cannam@147
|
131 : TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
|
cannam@147
|
132 // Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes
|
cannam@147
|
133 // segfaults instead.)
|
cannam@147
|
134 static_assert(sizeof...(params) == sizeof...(indexes),
|
cannam@147
|
135 "Wrong number of parameters to Tuple constructor.");
|
cannam@147
|
136 }
|
cannam@147
|
137
|
cannam@147
|
138 template <typename... U>
|
cannam@147
|
139 constexpr inline TupleImpl(Tuple<U...>&& other)
|
cannam@147
|
140 : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {}
|
cannam@147
|
141 template <typename... U>
|
cannam@147
|
142 constexpr inline TupleImpl(Tuple<U...>& other)
|
cannam@147
|
143 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
|
cannam@147
|
144 template <typename... U>
|
cannam@147
|
145 constexpr inline TupleImpl(const Tuple<U...>& other)
|
cannam@147
|
146 : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
|
cannam@147
|
147 };
|
cannam@147
|
148
|
cannam@147
|
149 struct MakeTupleFunc;
|
cannam@147
|
150
|
cannam@147
|
151 template <typename... T>
|
cannam@147
|
152 class Tuple {
|
cannam@147
|
153 // The actual Tuple class (used for tuples of size other than 1).
|
cannam@147
|
154
|
cannam@147
|
155 public:
|
cannam@147
|
156 template <typename... U>
|
cannam@147
|
157 constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
|
cannam@147
|
158 template <typename... U>
|
cannam@147
|
159 constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
|
cannam@147
|
160 template <typename... U>
|
cannam@147
|
161 constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
|
cannam@147
|
162
|
cannam@147
|
163 private:
|
cannam@147
|
164 template <typename... Params>
|
cannam@147
|
165 constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
|
cannam@147
|
166
|
cannam@147
|
167 TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
|
cannam@147
|
168
|
cannam@147
|
169 template <size_t index, typename... U>
|
cannam@147
|
170 friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
|
cannam@147
|
171 template <size_t index, typename... U>
|
cannam@147
|
172 friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
|
cannam@147
|
173 template <size_t index, typename... U>
|
cannam@147
|
174 friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
|
cannam@147
|
175 friend struct MakeTupleFunc;
|
cannam@147
|
176 };
|
cannam@147
|
177
|
cannam@147
|
178 template <>
|
cannam@147
|
179 class Tuple<> {
|
cannam@147
|
180 // Simplified zero-member version of Tuple. In particular this is important to make sure that
|
cannam@147
|
181 // Tuple<>() is constexpr.
|
cannam@147
|
182 };
|
cannam@147
|
183
|
cannam@147
|
184 template <typename T>
|
cannam@147
|
185 class Tuple<T>;
|
cannam@147
|
186 // Single-element tuple should never be used. The public API should ensure this.
|
cannam@147
|
187
|
cannam@147
|
188 template <size_t index, typename... T>
|
cannam@147
|
189 inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
|
cannam@147
|
190 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
|
cannam@147
|
191 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
|
cannam@147
|
192 return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
|
cannam@147
|
193 }
|
cannam@147
|
194 template <size_t index, typename... T>
|
cannam@147
|
195 inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
|
cannam@147
|
196 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
|
cannam@147
|
197 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
|
cannam@147
|
198 return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
|
cannam@147
|
199 }
|
cannam@147
|
200 template <size_t index, typename... T>
|
cannam@147
|
201 inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
|
cannam@147
|
202 // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
|
cannam@147
|
203 static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
|
cannam@147
|
204 return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
|
cannam@147
|
205 }
|
cannam@147
|
206 template <size_t index, typename T>
|
cannam@147
|
207 inline T&& getImpl(T&& value) {
|
cannam@147
|
208 // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
|
cannam@147
|
209
|
cannam@147
|
210 // Non-tuples are equivalent to one-element tuples.
|
cannam@147
|
211 static_assert(index == 0, "Tuple element index out-of-bounds.");
|
cannam@147
|
212 return kj::fwd<T>(value);
|
cannam@147
|
213 }
|
cannam@147
|
214
|
cannam@147
|
215
|
cannam@147
|
216 template <typename Func, typename SoFar, typename... T>
|
cannam@147
|
217 struct ExpandAndApplyResult_;
|
cannam@147
|
218 // Template which computes the return type of applying Func to T... after flattening tuples.
|
cannam@147
|
219 // SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
|
cannam@147
|
220 // is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
|
cannam@147
|
221
|
cannam@147
|
222 template <typename Func, typename First, typename... Rest, typename... T>
|
cannam@147
|
223 struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
|
cannam@147
|
224 : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
|
cannam@147
|
225 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
|
cannam@147
|
226 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
|
cannam@147
|
227 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
|
cannam@147
|
228 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
|
cannam@147
|
229 struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
|
cannam@147
|
230 : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
|
cannam@147
|
231 template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
|
cannam@147
|
232 struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
|
cannam@147
|
233 : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
|
cannam@147
|
234 template <typename Func, typename... T>
|
cannam@147
|
235 struct ExpandAndApplyResult_<Func, Tuple<T...>> {
|
cannam@147
|
236 typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
|
cannam@147
|
237 };
|
cannam@147
|
238 template <typename Func, typename... T>
|
cannam@147
|
239 using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
|
cannam@147
|
240 // Computes the expected return type of `expandAndApply()`.
|
cannam@147
|
241
|
cannam@147
|
242 template <typename Func>
|
cannam@147
|
243 inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
|
cannam@147
|
244 return func();
|
cannam@147
|
245 }
|
cannam@147
|
246
|
cannam@147
|
247 template <typename Func, typename First, typename... Rest>
|
cannam@147
|
248 struct ExpandAndApplyFunc {
|
cannam@147
|
249 Func&& func;
|
cannam@147
|
250 First&& first;
|
cannam@147
|
251 ExpandAndApplyFunc(Func&& func, First&& first)
|
cannam@147
|
252 : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
|
cannam@147
|
253 template <typename... T>
|
cannam@147
|
254 auto operator()(T&&... params)
|
cannam@147
|
255 -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
|
cannam@147
|
256 return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
|
cannam@147
|
257 }
|
cannam@147
|
258 };
|
cannam@147
|
259
|
cannam@147
|
260 template <typename Func, typename First, typename... Rest>
|
cannam@147
|
261 inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
|
cannam@147
|
262 -> ExpandAndApplyResult<Func, First, Rest...> {
|
cannam@147
|
263
|
cannam@147
|
264 return expandAndApply(
|
cannam@147
|
265 ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
|
cannam@147
|
266 kj::fwd<Rest>(rest)...);
|
cannam@147
|
267 }
|
cannam@147
|
268
|
cannam@147
|
269 template <typename Func, typename... FirstTypes, typename... Rest>
|
cannam@147
|
270 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
|
cannam@147
|
271 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
|
cannam@147
|
272 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
|
cannam@147
|
273 kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
|
cannam@147
|
274 }
|
cannam@147
|
275
|
cannam@147
|
276 template <typename Func, typename... FirstTypes, typename... Rest>
|
cannam@147
|
277 inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
|
cannam@147
|
278 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
|
cannam@147
|
279 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
|
cannam@147
|
280 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
|
cannam@147
|
281 }
|
cannam@147
|
282
|
cannam@147
|
283 template <typename Func, typename... FirstTypes, typename... Rest>
|
cannam@147
|
284 inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
|
cannam@147
|
285 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
|
cannam@147
|
286 return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
|
cannam@147
|
287 kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
|
cannam@147
|
288 }
|
cannam@147
|
289
|
cannam@147
|
290 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
|
cannam@147
|
291 inline auto expandAndApplyWithIndexes(
|
cannam@147
|
292 Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
|
cannam@147
|
293 -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
|
cannam@147
|
294 return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
|
cannam@147
|
295 kj::fwd<Rest>(rest)...);
|
cannam@147
|
296 }
|
cannam@147
|
297
|
cannam@147
|
298 template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
|
cannam@147
|
299 inline auto expandAndApplyWithIndexes(
|
cannam@147
|
300 Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
|
cannam@147
|
301 -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
|
cannam@147
|
302 return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
|
cannam@147
|
303 kj::fwd<Rest>(rest)...);
|
cannam@147
|
304 }
|
cannam@147
|
305
|
cannam@147
|
306 struct MakeTupleFunc {
|
cannam@147
|
307 template <typename... Params>
|
cannam@147
|
308 Tuple<Decay<Params>...> operator()(Params&&... params) {
|
cannam@147
|
309 return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
|
cannam@147
|
310 }
|
cannam@147
|
311 template <typename Param>
|
cannam@147
|
312 Decay<Param> operator()(Param&& param) {
|
cannam@147
|
313 return kj::fwd<Param>(param);
|
cannam@147
|
314 }
|
cannam@147
|
315 };
|
cannam@147
|
316
|
cannam@147
|
317 } // namespace _ (private)
|
cannam@147
|
318
|
cannam@147
|
319 template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
|
cannam@147
|
320 template <typename T> struct Tuple_<T> { typedef T Type; };
|
cannam@147
|
321
|
cannam@147
|
322 template <typename... T> using Tuple = typename Tuple_<T...>::Type;
|
cannam@147
|
323 // Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size
|
cannam@147
|
324 // other than 1 expand to an internal type. Either way, you can construct a Tuple using
|
cannam@147
|
325 // `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
|
cannam@147
|
326 // as arguments to a function using `kj::apply(func, myTuple)`.
|
cannam@147
|
327 //
|
cannam@147
|
328 // Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you
|
cannam@147
|
329 // construct a tuple from other tuples, the elements are flattened and concatenated.
|
cannam@147
|
330
|
cannam@147
|
331 template <typename... Params>
|
cannam@147
|
332 inline auto tuple(Params&&... params)
|
cannam@147
|
333 -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
|
cannam@147
|
334 // Construct a new tuple from the given values. Any tuples in the argument list will be
|
cannam@147
|
335 // flattened into the result.
|
cannam@147
|
336 return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
|
cannam@147
|
337 }
|
cannam@147
|
338
|
cannam@147
|
339 template <size_t index, typename Tuple>
|
cannam@147
|
340 inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
|
cannam@147
|
341 // Unpack and return the tuple element at the given index. The index is specified as a template
|
cannam@147
|
342 // parameter, e.g. `kj::get<3>(myTuple)`.
|
cannam@147
|
343 return _::getImpl<index>(kj::fwd<Tuple>(tuple));
|
cannam@147
|
344 }
|
cannam@147
|
345
|
cannam@147
|
346 template <typename Func, typename... Params>
|
cannam@147
|
347 inline auto apply(Func&& func, Params&&... params)
|
cannam@147
|
348 -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
|
cannam@147
|
349 // Apply a function to some arguments, expanding tuples into separate arguments.
|
cannam@147
|
350 return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
|
cannam@147
|
351 }
|
cannam@147
|
352
|
cannam@147
|
353 template <typename T> struct TupleSize_ { static constexpr size_t size = 1; };
|
cannam@147
|
354 template <typename... T> struct TupleSize_<_::Tuple<T...>> {
|
cannam@147
|
355 static constexpr size_t size = sizeof...(T);
|
cannam@147
|
356 };
|
cannam@147
|
357
|
cannam@147
|
358 template <typename T>
|
cannam@147
|
359 constexpr size_t tupleSize() { return TupleSize_<T>::size; }
|
cannam@147
|
360 // Returns size of the tuple T.
|
cannam@147
|
361
|
cannam@147
|
362 } // namespace kj
|
cannam@147
|
363
|
cannam@147
|
364 #endif // KJ_TUPLE_H_
|