cannam@147
|
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
cannam@147
|
2 // Licensed under the MIT License:
|
cannam@147
|
3 //
|
cannam@147
|
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
|
cannam@147
|
5 // of this software and associated documentation files (the "Software"), to deal
|
cannam@147
|
6 // in the Software without restriction, including without limitation the rights
|
cannam@147
|
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
cannam@147
|
8 // copies of the Software, and to permit persons to whom the Software is
|
cannam@147
|
9 // furnished to do so, subject to the following conditions:
|
cannam@147
|
10 //
|
cannam@147
|
11 // The above copyright notice and this permission notice shall be included in
|
cannam@147
|
12 // all copies or substantial portions of the Software.
|
cannam@147
|
13 //
|
cannam@147
|
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
cannam@147
|
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
cannam@147
|
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
cannam@147
|
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
cannam@147
|
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
cannam@147
|
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
cannam@147
|
20 // THE SOFTWARE.
|
cannam@147
|
21
|
cannam@147
|
22 #ifndef KJ_ASYNC_H_
|
cannam@147
|
23 #define KJ_ASYNC_H_
|
cannam@147
|
24
|
cannam@147
|
25 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
|
cannam@147
|
26 #pragma GCC system_header
|
cannam@147
|
27 #endif
|
cannam@147
|
28
|
cannam@147
|
29 #include "async-prelude.h"
|
cannam@147
|
30 #include "exception.h"
|
cannam@147
|
31 #include "refcount.h"
|
cannam@147
|
32
|
cannam@147
|
33 namespace kj {
|
cannam@147
|
34
|
cannam@147
|
35 class EventLoop;
|
cannam@147
|
36 class WaitScope;
|
cannam@147
|
37
|
cannam@147
|
38 template <typename T>
|
cannam@147
|
39 class Promise;
|
cannam@147
|
40 template <typename T>
|
cannam@147
|
41 class ForkedPromise;
|
cannam@147
|
42 template <typename T>
|
cannam@147
|
43 class PromiseFulfiller;
|
cannam@147
|
44 template <typename T>
|
cannam@147
|
45 struct PromiseFulfillerPair;
|
cannam@147
|
46
|
cannam@147
|
47 template <typename Func, typename T>
|
cannam@147
|
48 using PromiseForResult = Promise<_::JoinPromises<_::ReturnType<Func, T>>>;
|
cannam@147
|
49 // Evaluates to the type of Promise for the result of calling functor type Func with parameter type
|
cannam@147
|
50 // T. If T is void, then the promise is for the result of calling Func with no arguments. If
|
cannam@147
|
51 // Func itself returns a promise, the promises are joined, so you never get Promise<Promise<T>>.
|
cannam@147
|
52
|
cannam@147
|
53 // =======================================================================================
|
cannam@147
|
54 // Promises
|
cannam@147
|
55
|
cannam@147
|
56 template <typename T>
|
cannam@147
|
57 class Promise: protected _::PromiseBase {
|
cannam@147
|
58 // The basic primitive of asynchronous computation in KJ. Similar to "futures", but designed
|
cannam@147
|
59 // specifically for event loop concurrency. Similar to E promises and JavaScript Promises/A.
|
cannam@147
|
60 //
|
cannam@147
|
61 // A Promise represents a promise to produce a value of type T some time in the future. Once
|
cannam@147
|
62 // that value has been produced, the promise is "fulfilled". Alternatively, a promise can be
|
cannam@147
|
63 // "broken", with an Exception describing what went wrong. You may implicitly convert a value of
|
cannam@147
|
64 // type T to an already-fulfilled Promise<T>. You may implicitly convert the constant
|
cannam@147
|
65 // `kj::READY_NOW` to an already-fulfilled Promise<void>. You may also implicitly convert a
|
cannam@147
|
66 // `kj::Exception` to an already-broken promise of any type.
|
cannam@147
|
67 //
|
cannam@147
|
68 // Promises are linear types -- they are moveable but not copyable. If a Promise is destroyed
|
cannam@147
|
69 // or goes out of scope (without being moved elsewhere), any ongoing asynchronous operations
|
cannam@147
|
70 // meant to fulfill the promise will be canceled if possible. All methods of `Promise` (unless
|
cannam@147
|
71 // otherwise noted) actually consume the promise in the sense of move semantics. (Arguably they
|
cannam@147
|
72 // should be rvalue-qualified, but at the time this interface was created compilers didn't widely
|
cannam@147
|
73 // support that yet and anyway it would be pretty ugly typing kj::mv(promise).whatever().) If
|
cannam@147
|
74 // you want to use one Promise in two different places, you must fork it with `fork()`.
|
cannam@147
|
75 //
|
cannam@147
|
76 // To use the result of a Promise, you must call `then()` and supply a callback function to
|
cannam@147
|
77 // call with the result. `then()` returns another promise, for the result of the callback.
|
cannam@147
|
78 // Any time that this would result in Promise<Promise<T>>, the promises are collapsed into a
|
cannam@147
|
79 // simple Promise<T> that first waits for the outer promise, then the inner. Example:
|
cannam@147
|
80 //
|
cannam@147
|
81 // // Open a remote file, read the content, and then count the
|
cannam@147
|
82 // // number of lines of text.
|
cannam@147
|
83 // // Note that none of the calls here block. `file`, `content`
|
cannam@147
|
84 // // and `lineCount` are all initialized immediately before any
|
cannam@147
|
85 // // asynchronous operations occur. The lambda callbacks are
|
cannam@147
|
86 // // called later.
|
cannam@147
|
87 // Promise<Own<File>> file = openFtp("ftp://host/foo/bar");
|
cannam@147
|
88 // Promise<String> content = file.then(
|
cannam@147
|
89 // [](Own<File> file) -> Promise<String> {
|
cannam@147
|
90 // return file.readAll();
|
cannam@147
|
91 // });
|
cannam@147
|
92 // Promise<int> lineCount = content.then(
|
cannam@147
|
93 // [](String text) -> int {
|
cannam@147
|
94 // uint count = 0;
|
cannam@147
|
95 // for (char c: text) count += (c == '\n');
|
cannam@147
|
96 // return count;
|
cannam@147
|
97 // });
|
cannam@147
|
98 //
|
cannam@147
|
99 // For `then()` to work, the current thread must have an active `EventLoop`. Each callback
|
cannam@147
|
100 // is scheduled to execute in that loop. Since `then()` schedules callbacks only on the current
|
cannam@147
|
101 // thread's event loop, you do not need to worry about two callbacks running at the same time.
|
cannam@147
|
102 // You will need to set up at least one `EventLoop` at the top level of your program before you
|
cannam@147
|
103 // can use promises.
|
cannam@147
|
104 //
|
cannam@147
|
105 // To adapt a non-Promise-based asynchronous API to promises, use `newAdaptedPromise()`.
|
cannam@147
|
106 //
|
cannam@147
|
107 // Systems using promises should consider supporting the concept of "pipelining". Pipelining
|
cannam@147
|
108 // means allowing a caller to start issuing method calls against a promised object before the
|
cannam@147
|
109 // promise has actually been fulfilled. This is particularly useful if the promise is for a
|
cannam@147
|
110 // remote object living across a network, as this can avoid round trips when chaining a series
|
cannam@147
|
111 // of calls. It is suggested that any class T which supports pipelining implement a subclass of
|
cannam@147
|
112 // Promise<T> which adds "eventual send" methods -- methods which, when called, say "please
|
cannam@147
|
113 // invoke the corresponding method on the promised value once it is available". These methods
|
cannam@147
|
114 // should in turn return promises for the eventual results of said invocations. Cap'n Proto,
|
cannam@147
|
115 // for example, implements the type `RemotePromise` which supports pipelining RPC requests -- see
|
cannam@147
|
116 // `capnp/capability.h`.
|
cannam@147
|
117 //
|
cannam@147
|
118 // KJ Promises are based on E promises:
|
cannam@147
|
119 // http://wiki.erights.org/wiki/Walnut/Distributed_Computing#Promises
|
cannam@147
|
120 //
|
cannam@147
|
121 // KJ Promises are also inspired in part by the evolving standards for JavaScript/ECMAScript
|
cannam@147
|
122 // promises, which are themselves influenced by E promises:
|
cannam@147
|
123 // http://promisesaplus.com/
|
cannam@147
|
124 // https://github.com/domenic/promises-unwrapping
|
cannam@147
|
125
|
cannam@147
|
126 public:
|
cannam@147
|
127 Promise(_::FixVoid<T> value);
|
cannam@147
|
128 // Construct an already-fulfilled Promise from a value of type T. For non-void promises, the
|
cannam@147
|
129 // parameter type is simply T. So, e.g., in a function that returns `Promise<int>`, you can
|
cannam@147
|
130 // say `return 123;` to return a promise that is already fulfilled to 123.
|
cannam@147
|
131 //
|
cannam@147
|
132 // For void promises, use `kj::READY_NOW` as the value, e.g. `return kj::READY_NOW`.
|
cannam@147
|
133
|
cannam@147
|
134 Promise(kj::Exception&& e);
|
cannam@147
|
135 // Construct an already-broken Promise.
|
cannam@147
|
136
|
cannam@147
|
137 inline Promise(decltype(nullptr)) {}
|
cannam@147
|
138
|
cannam@147
|
139 template <typename Func, typename ErrorFunc = _::PropagateException>
|
cannam@147
|
140 PromiseForResult<Func, T> then(Func&& func, ErrorFunc&& errorHandler = _::PropagateException())
|
cannam@147
|
141 KJ_WARN_UNUSED_RESULT;
|
cannam@147
|
142 // Register a continuation function to be executed when the promise completes. The continuation
|
cannam@147
|
143 // (`func`) takes the promised value (an rvalue of type `T`) as its parameter. The continuation
|
cannam@147
|
144 // may return a new value; `then()` itself returns a promise for the continuation's eventual
|
cannam@147
|
145 // result. If the continuation itself returns a `Promise<U>`, then `then()` shall also return
|
cannam@147
|
146 // a `Promise<U>` which first waits for the original promise, then executes the continuation,
|
cannam@147
|
147 // then waits for the inner promise (i.e. it automatically "unwraps" the promise).
|
cannam@147
|
148 //
|
cannam@147
|
149 // In all cases, `then()` returns immediately. The continuation is executed later. The
|
cannam@147
|
150 // continuation is always executed on the same EventLoop (and, therefore, the same thread) which
|
cannam@147
|
151 // called `then()`, therefore no synchronization is necessary on state shared by the continuation
|
cannam@147
|
152 // and the surrounding scope. If no EventLoop is running on the current thread, `then()` throws
|
cannam@147
|
153 // an exception.
|
cannam@147
|
154 //
|
cannam@147
|
155 // You may also specify an error handler continuation as the second parameter. `errorHandler`
|
cannam@147
|
156 // must be a functor taking a parameter of type `kj::Exception&&`. It must return the same
|
cannam@147
|
157 // type as `func` returns (except when `func` returns `Promise<U>`, in which case `errorHandler`
|
cannam@147
|
158 // may return either `Promise<U>` or just `U`). The default error handler simply propagates the
|
cannam@147
|
159 // exception to the returned promise.
|
cannam@147
|
160 //
|
cannam@147
|
161 // Either `func` or `errorHandler` may, of course, throw an exception, in which case the promise
|
cannam@147
|
162 // is broken. When compiled with -fno-exceptions, the framework will still detect when a
|
cannam@147
|
163 // recoverable exception was thrown inside of a continuation and will consider the promise
|
cannam@147
|
164 // broken even though a (presumably garbage) result was returned.
|
cannam@147
|
165 //
|
cannam@147
|
166 // If the returned promise is destroyed before the callback runs, the callback will be canceled
|
cannam@147
|
167 // (it will never run).
|
cannam@147
|
168 //
|
cannam@147
|
169 // Note that `then()` -- like all other Promise methods -- consumes the promise on which it is
|
cannam@147
|
170 // called, in the sense of move semantics. After returning, the original promise is no longer
|
cannam@147
|
171 // valid, but `then()` returns a new promise.
|
cannam@147
|
172 //
|
cannam@147
|
173 // *Advanced implementation tips:* Most users will never need to worry about the below, but
|
cannam@147
|
174 // it is good to be aware of.
|
cannam@147
|
175 //
|
cannam@147
|
176 // As an optimization, if the callback function `func` does _not_ return another promise, then
|
cannam@147
|
177 // execution of `func` itself may be delayed until its result is known to be needed. The
|
cannam@147
|
178 // expectation here is that `func` is just doing some transformation on the results, not
|
cannam@147
|
179 // scheduling any other actions, therefore the system doesn't need to be proactive about
|
cannam@147
|
180 // evaluating it. This way, a chain of trivial then() transformations can be executed all at
|
cannam@147
|
181 // once without repeatedly re-scheduling through the event loop. Use the `eagerlyEvaluate()`
|
cannam@147
|
182 // method to suppress this behavior.
|
cannam@147
|
183 //
|
cannam@147
|
184 // On the other hand, if `func` _does_ return another promise, then the system evaluates `func`
|
cannam@147
|
185 // as soon as possible, because the promise it returns might be for a newly-scheduled
|
cannam@147
|
186 // long-running asynchronous task.
|
cannam@147
|
187 //
|
cannam@147
|
188 // As another optimization, when a callback function registered with `then()` is actually
|
cannam@147
|
189 // scheduled, it is scheduled to occur immediately, preempting other work in the event queue.
|
cannam@147
|
190 // This allows a long chain of `then`s to execute all at once, improving cache locality by
|
cannam@147
|
191 // clustering operations on the same data. However, this implies that starvation can occur
|
cannam@147
|
192 // if a chain of `then()`s takes a very long time to execute without ever stopping to wait for
|
cannam@147
|
193 // actual I/O. To solve this, use `kj::evalLater()` to yield control; this way, all other events
|
cannam@147
|
194 // in the queue will get a chance to run before your callback is executed.
|
cannam@147
|
195
|
cannam@147
|
196 Promise<void> ignoreResult() KJ_WARN_UNUSED_RESULT { return then([](T&&) {}); }
|
cannam@147
|
197 // Convenience method to convert the promise to a void promise by ignoring the return value.
|
cannam@147
|
198 //
|
cannam@147
|
199 // You must still wait on the returned promise if you want the task to execute.
|
cannam@147
|
200
|
cannam@147
|
201 template <typename ErrorFunc>
|
cannam@147
|
202 Promise<T> catch_(ErrorFunc&& errorHandler) KJ_WARN_UNUSED_RESULT;
|
cannam@147
|
203 // Equivalent to `.then(identityFunc, errorHandler)`, where `identifyFunc` is a function that
|
cannam@147
|
204 // just returns its input.
|
cannam@147
|
205
|
cannam@147
|
206 T wait(WaitScope& waitScope);
|
cannam@147
|
207 // Run the event loop until the promise is fulfilled, then return its result. If the promise
|
cannam@147
|
208 // is rejected, throw an exception.
|
cannam@147
|
209 //
|
cannam@147
|
210 // wait() is primarily useful at the top level of a program -- typically, within the function
|
cannam@147
|
211 // that allocated the EventLoop. For example, a program that performs one or two RPCs and then
|
cannam@147
|
212 // exits would likely use wait() in its main() function to wait on each RPC. On the other hand,
|
cannam@147
|
213 // server-side code generally cannot use wait(), because it has to be able to accept multiple
|
cannam@147
|
214 // requests at once.
|
cannam@147
|
215 //
|
cannam@147
|
216 // If the promise is rejected, `wait()` throws an exception. If the program was compiled without
|
cannam@147
|
217 // exceptions (-fno-exceptions), this will usually abort. In this case you really should first
|
cannam@147
|
218 // use `then()` to set an appropriate handler for the exception case, so that the promise you
|
cannam@147
|
219 // actually wait on never throws.
|
cannam@147
|
220 //
|
cannam@147
|
221 // `waitScope` is an object proving that the caller is in a scope where wait() is allowed. By
|
cannam@147
|
222 // convention, any function which might call wait(), or which might call another function which
|
cannam@147
|
223 // might call wait(), must take `WaitScope&` as one of its parameters. This is needed for two
|
cannam@147
|
224 // reasons:
|
cannam@147
|
225 // * `wait()` is not allowed during an event callback, because event callbacks are themselves
|
cannam@147
|
226 // called during some other `wait()`, and such recursive `wait()`s would only be able to
|
cannam@147
|
227 // complete in LIFO order, which might mean that the outer `wait()` ends up waiting longer
|
cannam@147
|
228 // than it is supposed to. To prevent this, a `WaitScope` cannot be constructed or used during
|
cannam@147
|
229 // an event callback.
|
cannam@147
|
230 // * Since `wait()` runs the event loop, unrelated event callbacks may execute before `wait()`
|
cannam@147
|
231 // returns. This means that anyone calling `wait()` must be reentrant -- state may change
|
cannam@147
|
232 // around them in arbitrary ways. Therefore, callers really need to know if a function they
|
cannam@147
|
233 // are calling might wait(), and the `WaitScope&` parameter makes this clear.
|
cannam@147
|
234 //
|
cannam@147
|
235 // TODO(someday): Implement fibers, and let them call wait() even when they are handling an
|
cannam@147
|
236 // event.
|
cannam@147
|
237
|
cannam@147
|
238 ForkedPromise<T> fork() KJ_WARN_UNUSED_RESULT;
|
cannam@147
|
239 // Forks the promise, so that multiple different clients can independently wait on the result.
|
cannam@147
|
240 // `T` must be copy-constructable for this to work. Or, in the special case where `T` is
|
cannam@147
|
241 // `Own<U>`, `U` must have a method `Own<U> addRef()` which returns a new reference to the same
|
cannam@147
|
242 // (or an equivalent) object (probably implemented via reference counting).
|
cannam@147
|
243
|
cannam@147
|
244 _::SplitTuplePromise<T> split();
|
cannam@147
|
245 // Split a promise for a tuple into a tuple of promises.
|
cannam@147
|
246 //
|
cannam@147
|
247 // E.g. if you have `Promise<kj::Tuple<T, U>>`, `split()` returns
|
cannam@147
|
248 // `kj::Tuple<Promise<T>, Promise<U>>`.
|
cannam@147
|
249
|
cannam@147
|
250 Promise<T> exclusiveJoin(Promise<T>&& other) KJ_WARN_UNUSED_RESULT;
|
cannam@147
|
251 // Return a new promise that resolves when either the original promise resolves or `other`
|
cannam@147
|
252 // resolves (whichever comes first). The promise that didn't resolve first is canceled.
|
cannam@147
|
253
|
cannam@147
|
254 // TODO(someday): inclusiveJoin(), or perhaps just join(), which waits for both completions
|
cannam@147
|
255 // and produces a tuple?
|
cannam@147
|
256
|
cannam@147
|
257 template <typename... Attachments>
|
cannam@147
|
258 Promise<T> attach(Attachments&&... attachments) KJ_WARN_UNUSED_RESULT;
|
cannam@147
|
259 // "Attaches" one or more movable objects (often, Own<T>s) to the promise, such that they will
|
cannam@147
|
260 // be destroyed when the promise resolves. This is useful when a promise's callback contains
|
cannam@147
|
261 // pointers into some object and you want to make sure the object still exists when the callback
|
cannam@147
|
262 // runs -- after calling then(), use attach() to add necessary objects to the result.
|
cannam@147
|
263
|
cannam@147
|
264 template <typename ErrorFunc>
|
cannam@147
|
265 Promise<T> eagerlyEvaluate(ErrorFunc&& errorHandler) KJ_WARN_UNUSED_RESULT;
|
cannam@147
|
266 Promise<T> eagerlyEvaluate(decltype(nullptr)) KJ_WARN_UNUSED_RESULT;
|
cannam@147
|
267 // Force eager evaluation of this promise. Use this if you are going to hold on to the promise
|
cannam@147
|
268 // for awhile without consuming the result, but you want to make sure that the system actually
|
cannam@147
|
269 // processes it.
|
cannam@147
|
270 //
|
cannam@147
|
271 // `errorHandler` is a function that takes `kj::Exception&&`, like the second parameter to
|
cannam@147
|
272 // `then()`, except that it must return void. We make you specify this because otherwise it's
|
cannam@147
|
273 // easy to forget to handle errors in a promise that you never use. You may specify nullptr for
|
cannam@147
|
274 // the error handler if you are sure that ignoring errors is fine, or if you know that you'll
|
cannam@147
|
275 // eventually wait on the promise somewhere.
|
cannam@147
|
276
|
cannam@147
|
277 template <typename ErrorFunc>
|
cannam@147
|
278 void detach(ErrorFunc&& errorHandler);
|
cannam@147
|
279 // Allows the promise to continue running in the background until it completes or the
|
cannam@147
|
280 // `EventLoop` is destroyed. Be careful when using this: since you can no longer cancel this
|
cannam@147
|
281 // promise, you need to make sure that the promise owns all the objects it touches or make sure
|
cannam@147
|
282 // those objects outlive the EventLoop.
|
cannam@147
|
283 //
|
cannam@147
|
284 // `errorHandler` is a function that takes `kj::Exception&&`, like the second parameter to
|
cannam@147
|
285 // `then()`, except that it must return void.
|
cannam@147
|
286 //
|
cannam@147
|
287 // This function exists mainly to implement the Cap'n Proto requirement that RPC calls cannot be
|
cannam@147
|
288 // canceled unless the callee explicitly permits it.
|
cannam@147
|
289
|
cannam@147
|
290 kj::String trace();
|
cannam@147
|
291 // Returns a dump of debug info about this promise. Not for production use. Requires RTTI.
|
cannam@147
|
292 // This method does NOT consume the promise as other methods do.
|
cannam@147
|
293
|
cannam@147
|
294 private:
|
cannam@147
|
295 Promise(bool, Own<_::PromiseNode>&& node): PromiseBase(kj::mv(node)) {}
|
cannam@147
|
296 // Second parameter prevent ambiguity with immediate-value constructor.
|
cannam@147
|
297
|
cannam@147
|
298 template <typename>
|
cannam@147
|
299 friend class Promise;
|
cannam@147
|
300 friend class EventLoop;
|
cannam@147
|
301 template <typename U, typename Adapter, typename... Params>
|
cannam@147
|
302 friend Promise<U> newAdaptedPromise(Params&&... adapterConstructorParams);
|
cannam@147
|
303 template <typename U>
|
cannam@147
|
304 friend PromiseFulfillerPair<U> newPromiseAndFulfiller();
|
cannam@147
|
305 template <typename>
|
cannam@147
|
306 friend class _::ForkHub;
|
cannam@147
|
307 friend class _::TaskSetImpl;
|
cannam@147
|
308 friend Promise<void> _::yield();
|
cannam@147
|
309 friend class _::NeverDone;
|
cannam@147
|
310 template <typename U>
|
cannam@147
|
311 friend Promise<Array<U>> joinPromises(Array<Promise<U>>&& promises);
|
cannam@147
|
312 friend Promise<void> joinPromises(Array<Promise<void>>&& promises);
|
cannam@147
|
313 };
|
cannam@147
|
314
|
cannam@147
|
315 template <typename T>
|
cannam@147
|
316 class ForkedPromise {
|
cannam@147
|
317 // The result of `Promise::fork()` and `EventLoop::fork()`. Allows branches to be created.
|
cannam@147
|
318 // Like `Promise<T>`, this is a pass-by-move type.
|
cannam@147
|
319
|
cannam@147
|
320 public:
|
cannam@147
|
321 inline ForkedPromise(decltype(nullptr)) {}
|
cannam@147
|
322
|
cannam@147
|
323 Promise<T> addBranch();
|
cannam@147
|
324 // Add a new branch to the fork. The branch is equivalent to the original promise.
|
cannam@147
|
325
|
cannam@147
|
326 private:
|
cannam@147
|
327 Own<_::ForkHub<_::FixVoid<T>>> hub;
|
cannam@147
|
328
|
cannam@147
|
329 inline ForkedPromise(bool, Own<_::ForkHub<_::FixVoid<T>>>&& hub): hub(kj::mv(hub)) {}
|
cannam@147
|
330
|
cannam@147
|
331 friend class Promise<T>;
|
cannam@147
|
332 friend class EventLoop;
|
cannam@147
|
333 };
|
cannam@147
|
334
|
cannam@147
|
335 constexpr _::Void READY_NOW = _::Void();
|
cannam@147
|
336 // Use this when you need a Promise<void> that is already fulfilled -- this value can be implicitly
|
cannam@147
|
337 // cast to `Promise<void>`.
|
cannam@147
|
338
|
cannam@147
|
339 constexpr _::NeverDone NEVER_DONE = _::NeverDone();
|
cannam@147
|
340 // The opposite of `READY_NOW`, return this when the promise should never resolve. This can be
|
cannam@147
|
341 // implicitly converted to any promise type. You may also call `NEVER_DONE.wait()` to wait
|
cannam@147
|
342 // forever (useful for servers).
|
cannam@147
|
343
|
cannam@147
|
344 template <typename Func>
|
cannam@147
|
345 PromiseForResult<Func, void> evalLater(Func&& func) KJ_WARN_UNUSED_RESULT;
|
cannam@147
|
346 // Schedule for the given zero-parameter function to be executed in the event loop at some
|
cannam@147
|
347 // point in the near future. Returns a Promise for its result -- or, if `func()` itself returns
|
cannam@147
|
348 // a promise, `evalLater()` returns a Promise for the result of resolving that promise.
|
cannam@147
|
349 //
|
cannam@147
|
350 // Example usage:
|
cannam@147
|
351 // Promise<int> x = evalLater([]() { return 123; });
|
cannam@147
|
352 //
|
cannam@147
|
353 // The above is exactly equivalent to:
|
cannam@147
|
354 // Promise<int> x = Promise<void>(READY_NOW).then([]() { return 123; });
|
cannam@147
|
355 //
|
cannam@147
|
356 // If the returned promise is destroyed before the callback runs, the callback will be canceled
|
cannam@147
|
357 // (never called).
|
cannam@147
|
358 //
|
cannam@147
|
359 // If you schedule several evaluations with `evalLater` during the same callback, they are
|
cannam@147
|
360 // guaranteed to be executed in order.
|
cannam@147
|
361
|
cannam@147
|
362 template <typename Func>
|
cannam@147
|
363 PromiseForResult<Func, void> evalNow(Func&& func) KJ_WARN_UNUSED_RESULT;
|
cannam@147
|
364 // Run `func()` and return a promise for its result. `func()` executes before `evalNow()` returns.
|
cannam@147
|
365 // If `func()` throws an exception, the exception is caught and wrapped in a promise -- this is the
|
cannam@147
|
366 // main reason why `evalNow()` is useful.
|
cannam@147
|
367
|
cannam@147
|
368 template <typename T>
|
cannam@147
|
369 Promise<Array<T>> joinPromises(Array<Promise<T>>&& promises);
|
cannam@147
|
370 // Join an array of promises into a promise for an array.
|
cannam@147
|
371
|
cannam@147
|
372 // =======================================================================================
|
cannam@147
|
373 // Hack for creating a lambda that holds an owned pointer.
|
cannam@147
|
374
|
cannam@147
|
375 template <typename Func, typename MovedParam>
|
cannam@147
|
376 class CaptureByMove {
|
cannam@147
|
377 public:
|
cannam@147
|
378 inline CaptureByMove(Func&& func, MovedParam&& param)
|
cannam@147
|
379 : func(kj::mv(func)), param(kj::mv(param)) {}
|
cannam@147
|
380
|
cannam@147
|
381 template <typename... Params>
|
cannam@147
|
382 inline auto operator()(Params&&... params)
|
cannam@147
|
383 -> decltype(kj::instance<Func>()(kj::instance<MovedParam&&>(), kj::fwd<Params>(params)...)) {
|
cannam@147
|
384 return func(kj::mv(param), kj::fwd<Params>(params)...);
|
cannam@147
|
385 }
|
cannam@147
|
386
|
cannam@147
|
387 private:
|
cannam@147
|
388 Func func;
|
cannam@147
|
389 MovedParam param;
|
cannam@147
|
390 };
|
cannam@147
|
391
|
cannam@147
|
392 template <typename Func, typename MovedParam>
|
cannam@147
|
393 inline CaptureByMove<Func, Decay<MovedParam>> mvCapture(MovedParam&& param, Func&& func) {
|
cannam@147
|
394 // Hack to create a "lambda" which captures a variable by moving it rather than copying or
|
cannam@147
|
395 // referencing. C++14 generalized captures should make this obsolete, but for now in C++11 this
|
cannam@147
|
396 // is commonly needed for Promise continuations that own their state. Example usage:
|
cannam@147
|
397 //
|
cannam@147
|
398 // Own<Foo> ptr = makeFoo();
|
cannam@147
|
399 // Promise<int> promise = callRpc();
|
cannam@147
|
400 // promise.then(mvCapture(ptr, [](Own<Foo>&& ptr, int result) {
|
cannam@147
|
401 // return ptr->finish(result);
|
cannam@147
|
402 // }));
|
cannam@147
|
403
|
cannam@147
|
404 return CaptureByMove<Func, Decay<MovedParam>>(kj::fwd<Func>(func), kj::mv(param));
|
cannam@147
|
405 }
|
cannam@147
|
406
|
cannam@147
|
407 // =======================================================================================
|
cannam@147
|
408 // Advanced promise construction
|
cannam@147
|
409
|
cannam@147
|
410 template <typename T>
|
cannam@147
|
411 class PromiseFulfiller {
|
cannam@147
|
412 // A callback which can be used to fulfill a promise. Only the first call to fulfill() or
|
cannam@147
|
413 // reject() matters; subsequent calls are ignored.
|
cannam@147
|
414
|
cannam@147
|
415 public:
|
cannam@147
|
416 virtual void fulfill(T&& value) = 0;
|
cannam@147
|
417 // Fulfill the promise with the given value.
|
cannam@147
|
418
|
cannam@147
|
419 virtual void reject(Exception&& exception) = 0;
|
cannam@147
|
420 // Reject the promise with an error.
|
cannam@147
|
421
|
cannam@147
|
422 virtual bool isWaiting() = 0;
|
cannam@147
|
423 // Returns true if the promise is still unfulfilled and someone is potentially waiting for it.
|
cannam@147
|
424 // Returns false if fulfill()/reject() has already been called *or* if the promise to be
|
cannam@147
|
425 // fulfilled has been discarded and therefore the result will never be used anyway.
|
cannam@147
|
426
|
cannam@147
|
427 template <typename Func>
|
cannam@147
|
428 bool rejectIfThrows(Func&& func);
|
cannam@147
|
429 // Call the function (with no arguments) and return true. If an exception is thrown, call
|
cannam@147
|
430 // `fulfiller.reject()` and then return false. When compiled with exceptions disabled,
|
cannam@147
|
431 // non-fatal exceptions are still detected and handled correctly.
|
cannam@147
|
432 };
|
cannam@147
|
433
|
cannam@147
|
434 template <>
|
cannam@147
|
435 class PromiseFulfiller<void> {
|
cannam@147
|
436 // Specialization of PromiseFulfiller for void promises. See PromiseFulfiller<T>.
|
cannam@147
|
437
|
cannam@147
|
438 public:
|
cannam@147
|
439 virtual void fulfill(_::Void&& value = _::Void()) = 0;
|
cannam@147
|
440 // Call with zero parameters. The parameter is a dummy that only exists so that subclasses don't
|
cannam@147
|
441 // have to specialize for <void>.
|
cannam@147
|
442
|
cannam@147
|
443 virtual void reject(Exception&& exception) = 0;
|
cannam@147
|
444 virtual bool isWaiting() = 0;
|
cannam@147
|
445
|
cannam@147
|
446 template <typename Func>
|
cannam@147
|
447 bool rejectIfThrows(Func&& func);
|
cannam@147
|
448 };
|
cannam@147
|
449
|
cannam@147
|
450 template <typename T, typename Adapter, typename... Params>
|
cannam@147
|
451 Promise<T> newAdaptedPromise(Params&&... adapterConstructorParams);
|
cannam@147
|
452 // Creates a new promise which owns an instance of `Adapter` which encapsulates the operation
|
cannam@147
|
453 // that will eventually fulfill the promise. This is primarily useful for adapting non-KJ
|
cannam@147
|
454 // asynchronous APIs to use promises.
|
cannam@147
|
455 //
|
cannam@147
|
456 // An instance of `Adapter` will be allocated and owned by the returned `Promise`. A
|
cannam@147
|
457 // `PromiseFulfiller<T>&` will be passed as the first parameter to the adapter's constructor,
|
cannam@147
|
458 // and `adapterConstructorParams` will be forwarded as the subsequent parameters. The adapter
|
cannam@147
|
459 // is expected to perform some asynchronous operation and call the `PromiseFulfiller<T>` once
|
cannam@147
|
460 // it is finished.
|
cannam@147
|
461 //
|
cannam@147
|
462 // The adapter is destroyed when its owning Promise is destroyed. This may occur before the
|
cannam@147
|
463 // Promise has been fulfilled. In this case, the adapter's destructor should cancel the
|
cannam@147
|
464 // asynchronous operation. Once the adapter is destroyed, the fulfillment callback cannot be
|
cannam@147
|
465 // called.
|
cannam@147
|
466 //
|
cannam@147
|
467 // An adapter implementation should be carefully written to ensure that it cannot accidentally
|
cannam@147
|
468 // be left unfulfilled permanently because of an exception. Consider making liberal use of
|
cannam@147
|
469 // `PromiseFulfiller<T>::rejectIfThrows()`.
|
cannam@147
|
470
|
cannam@147
|
471 template <typename T>
|
cannam@147
|
472 struct PromiseFulfillerPair {
|
cannam@147
|
473 Promise<_::JoinPromises<T>> promise;
|
cannam@147
|
474 Own<PromiseFulfiller<T>> fulfiller;
|
cannam@147
|
475 };
|
cannam@147
|
476
|
cannam@147
|
477 template <typename T>
|
cannam@147
|
478 PromiseFulfillerPair<T> newPromiseAndFulfiller();
|
cannam@147
|
479 // Construct a Promise and a separate PromiseFulfiller which can be used to fulfill the promise.
|
cannam@147
|
480 // If the PromiseFulfiller is destroyed before either of its methods are called, the Promise is
|
cannam@147
|
481 // implicitly rejected.
|
cannam@147
|
482 //
|
cannam@147
|
483 // Although this function is easier to use than `newAdaptedPromise()`, it has the serious drawback
|
cannam@147
|
484 // that there is no way to handle cancellation (i.e. detect when the Promise is discarded).
|
cannam@147
|
485 //
|
cannam@147
|
486 // You can arrange to fulfill a promise with another promise by using a promise type for T. E.g.
|
cannam@147
|
487 // `newPromiseAndFulfiller<Promise<U>>()` will produce a promise of type `Promise<U>` but the
|
cannam@147
|
488 // fulfiller will be of type `PromiseFulfiller<Promise<U>>`. Thus you pass a `Promise<U>` to the
|
cannam@147
|
489 // `fulfill()` callback, and the promises are chained.
|
cannam@147
|
490
|
cannam@147
|
491 // =======================================================================================
|
cannam@147
|
492 // TaskSet
|
cannam@147
|
493
|
cannam@147
|
494 class TaskSet {
|
cannam@147
|
495 // Holds a collection of Promise<void>s and ensures that each executes to completion. Memory
|
cannam@147
|
496 // associated with each promise is automatically freed when the promise completes. Destroying
|
cannam@147
|
497 // the TaskSet itself automatically cancels all unfinished promises.
|
cannam@147
|
498 //
|
cannam@147
|
499 // This is useful for "daemon" objects that perform background tasks which aren't intended to
|
cannam@147
|
500 // fulfill any particular external promise, but which may need to be canceled (and thus can't
|
cannam@147
|
501 // use `Promise::detach()`). The daemon object holds a TaskSet to collect these tasks it is
|
cannam@147
|
502 // working on. This way, if the daemon itself is destroyed, the TaskSet is detroyed as well,
|
cannam@147
|
503 // and everything the daemon is doing is canceled.
|
cannam@147
|
504
|
cannam@147
|
505 public:
|
cannam@147
|
506 class ErrorHandler {
|
cannam@147
|
507 public:
|
cannam@147
|
508 virtual void taskFailed(kj::Exception&& exception) = 0;
|
cannam@147
|
509 };
|
cannam@147
|
510
|
cannam@147
|
511 TaskSet(ErrorHandler& errorHandler);
|
cannam@147
|
512 // `loop` will be used to wait on promises. `errorHandler` will be executed any time a task
|
cannam@147
|
513 // throws an exception, and will execute within the given EventLoop.
|
cannam@147
|
514
|
cannam@147
|
515 ~TaskSet() noexcept(false);
|
cannam@147
|
516
|
cannam@147
|
517 void add(Promise<void>&& promise);
|
cannam@147
|
518
|
cannam@147
|
519 kj::String trace();
|
cannam@147
|
520 // Return debug info about all promises currently in the TaskSet.
|
cannam@147
|
521
|
cannam@147
|
522 private:
|
cannam@147
|
523 Own<_::TaskSetImpl> impl;
|
cannam@147
|
524 };
|
cannam@147
|
525
|
cannam@147
|
526 // =======================================================================================
|
cannam@147
|
527 // The EventLoop class
|
cannam@147
|
528
|
cannam@147
|
529 class EventPort {
|
cannam@147
|
530 // Interfaces between an `EventLoop` and events originating from outside of the loop's thread.
|
cannam@147
|
531 // All such events come in through the `EventPort` implementation.
|
cannam@147
|
532 //
|
cannam@147
|
533 // An `EventPort` implementation may interface with low-level operating system APIs and/or other
|
cannam@147
|
534 // threads. You can also write an `EventPort` which wraps some other (non-KJ) event loop
|
cannam@147
|
535 // framework, allowing the two to coexist in a single thread.
|
cannam@147
|
536
|
cannam@147
|
537 public:
|
cannam@147
|
538 virtual bool wait() = 0;
|
cannam@147
|
539 // Wait for an external event to arrive, sleeping if necessary. Once at least one event has
|
cannam@147
|
540 // arrived, queue it to the event loop (e.g. by fulfilling a promise) and return.
|
cannam@147
|
541 //
|
cannam@147
|
542 // This is called during `Promise::wait()` whenever the event queue becomes empty, in order to
|
cannam@147
|
543 // wait for new events to populate the queue.
|
cannam@147
|
544 //
|
cannam@147
|
545 // It is safe to return even if nothing has actually been queued, so long as calling `wait()` in
|
cannam@147
|
546 // a loop will eventually sleep. (That is to say, false positives are fine.)
|
cannam@147
|
547 //
|
cannam@147
|
548 // Returns true if wake() has been called from another thread. (Precisely, returns true if
|
cannam@147
|
549 // no previous call to wait `wait()` nor `poll()` has returned true since `wake()` was last
|
cannam@147
|
550 // called.)
|
cannam@147
|
551
|
cannam@147
|
552 virtual bool poll() = 0;
|
cannam@147
|
553 // Check if any external events have arrived, but do not sleep. If any events have arrived,
|
cannam@147
|
554 // add them to the event queue (e.g. by fulfilling promises) before returning.
|
cannam@147
|
555 //
|
cannam@147
|
556 // This may be called during `Promise::wait()` when the EventLoop has been executing for a while
|
cannam@147
|
557 // without a break but is still non-empty.
|
cannam@147
|
558 //
|
cannam@147
|
559 // Returns true if wake() has been called from another thread. (Precisely, returns true if
|
cannam@147
|
560 // no previous call to wait `wait()` nor `poll()` has returned true since `wake()` was last
|
cannam@147
|
561 // called.)
|
cannam@147
|
562
|
cannam@147
|
563 virtual void setRunnable(bool runnable);
|
cannam@147
|
564 // Called to notify the `EventPort` when the `EventLoop` has work to do; specifically when it
|
cannam@147
|
565 // transitions from empty -> runnable or runnable -> empty. This is typically useful when
|
cannam@147
|
566 // integrating with an external event loop; if the loop is currently runnable then you should
|
cannam@147
|
567 // arrange to call run() on it soon. The default implementation does nothing.
|
cannam@147
|
568
|
cannam@147
|
569 virtual void wake() const;
|
cannam@147
|
570 // Wake up the EventPort's thread from another thread.
|
cannam@147
|
571 //
|
cannam@147
|
572 // Unlike all other methods on this interface, `wake()` may be called from another thread, hence
|
cannam@147
|
573 // it is `const`.
|
cannam@147
|
574 //
|
cannam@147
|
575 // Technically speaking, `wake()` causes the target thread to cease sleeping and not to sleep
|
cannam@147
|
576 // again until `wait()` or `poll()` has returned true at least once.
|
cannam@147
|
577 //
|
cannam@147
|
578 // The default implementation throws an UNIMPLEMENTED exception.
|
cannam@147
|
579 };
|
cannam@147
|
580
|
cannam@147
|
581 class EventLoop {
|
cannam@147
|
582 // Represents a queue of events being executed in a loop. Most code won't interact with
|
cannam@147
|
583 // EventLoop directly, but instead use `Promise`s to interact with it indirectly. See the
|
cannam@147
|
584 // documentation for `Promise`.
|
cannam@147
|
585 //
|
cannam@147
|
586 // Each thread can have at most one current EventLoop. To make an `EventLoop` current for
|
cannam@147
|
587 // the thread, create a `WaitScope`. Async APIs require that the thread has a current EventLoop,
|
cannam@147
|
588 // or they will throw exceptions. APIs that use `Promise::wait()` additionally must explicitly
|
cannam@147
|
589 // be passed a reference to the `WaitScope` to make the caller aware that they might block.
|
cannam@147
|
590 //
|
cannam@147
|
591 // Generally, you will want to construct an `EventLoop` at the top level of your program, e.g.
|
cannam@147
|
592 // in the main() function, or in the start function of a thread. You can then use it to
|
cannam@147
|
593 // construct some promises and wait on the result. Example:
|
cannam@147
|
594 //
|
cannam@147
|
595 // int main() {
|
cannam@147
|
596 // // `loop` becomes the official EventLoop for the thread.
|
cannam@147
|
597 // MyEventPort eventPort;
|
cannam@147
|
598 // EventLoop loop(eventPort);
|
cannam@147
|
599 //
|
cannam@147
|
600 // // Now we can call an async function.
|
cannam@147
|
601 // Promise<String> textPromise = getHttp("http://example.com");
|
cannam@147
|
602 //
|
cannam@147
|
603 // // And we can wait for the promise to complete. Note that you can only use `wait()`
|
cannam@147
|
604 // // from the top level, not from inside a promise callback.
|
cannam@147
|
605 // String text = textPromise.wait();
|
cannam@147
|
606 // print(text);
|
cannam@147
|
607 // return 0;
|
cannam@147
|
608 // }
|
cannam@147
|
609 //
|
cannam@147
|
610 // Most applications that do I/O will prefer to use `setupAsyncIo()` from `async-io.h` rather
|
cannam@147
|
611 // than allocate an `EventLoop` directly.
|
cannam@147
|
612
|
cannam@147
|
613 public:
|
cannam@147
|
614 EventLoop();
|
cannam@147
|
615 // Construct an `EventLoop` which does not receive external events at all.
|
cannam@147
|
616
|
cannam@147
|
617 explicit EventLoop(EventPort& port);
|
cannam@147
|
618 // Construct an `EventLoop` which receives external events through the given `EventPort`.
|
cannam@147
|
619
|
cannam@147
|
620 ~EventLoop() noexcept(false);
|
cannam@147
|
621
|
cannam@147
|
622 void run(uint maxTurnCount = maxValue);
|
cannam@147
|
623 // Run the event loop for `maxTurnCount` turns or until there is nothing left to be done,
|
cannam@147
|
624 // whichever comes first. This never calls the `EventPort`'s `sleep()` or `poll()`. It will
|
cannam@147
|
625 // call the `EventPort`'s `setRunnable(false)` if the queue becomes empty.
|
cannam@147
|
626
|
cannam@147
|
627 bool isRunnable();
|
cannam@147
|
628 // Returns true if run() would currently do anything, or false if the queue is empty.
|
cannam@147
|
629
|
cannam@147
|
630 private:
|
cannam@147
|
631 EventPort& port;
|
cannam@147
|
632
|
cannam@147
|
633 bool running = false;
|
cannam@147
|
634 // True while looping -- wait() is then not allowed.
|
cannam@147
|
635
|
cannam@147
|
636 bool lastRunnableState = false;
|
cannam@147
|
637 // What did we last pass to port.setRunnable()?
|
cannam@147
|
638
|
cannam@147
|
639 _::Event* head = nullptr;
|
cannam@147
|
640 _::Event** tail = &head;
|
cannam@147
|
641 _::Event** depthFirstInsertPoint = &head;
|
cannam@147
|
642
|
cannam@147
|
643 Own<_::TaskSetImpl> daemons;
|
cannam@147
|
644
|
cannam@147
|
645 bool turn();
|
cannam@147
|
646 void setRunnable(bool runnable);
|
cannam@147
|
647 void enterScope();
|
cannam@147
|
648 void leaveScope();
|
cannam@147
|
649
|
cannam@147
|
650 friend void _::detach(kj::Promise<void>&& promise);
|
cannam@147
|
651 friend void _::waitImpl(Own<_::PromiseNode>&& node, _::ExceptionOrValue& result,
|
cannam@147
|
652 WaitScope& waitScope);
|
cannam@147
|
653 friend class _::Event;
|
cannam@147
|
654 friend class WaitScope;
|
cannam@147
|
655 };
|
cannam@147
|
656
|
cannam@147
|
657 class WaitScope {
|
cannam@147
|
658 // Represents a scope in which asynchronous programming can occur. A `WaitScope` should usually
|
cannam@147
|
659 // be allocated on the stack and serves two purposes:
|
cannam@147
|
660 // * While the `WaitScope` exists, its `EventLoop` is registered as the current loop for the
|
cannam@147
|
661 // thread. Most operations dealing with `Promise` (including all of its methods) do not work
|
cannam@147
|
662 // unless the thread has a current `EventLoop`.
|
cannam@147
|
663 // * `WaitScope` may be passed to `Promise::wait()` to synchronously wait for a particular
|
cannam@147
|
664 // promise to complete. See `Promise::wait()` for an extended discussion.
|
cannam@147
|
665
|
cannam@147
|
666 public:
|
cannam@147
|
667 inline explicit WaitScope(EventLoop& loop): loop(loop) { loop.enterScope(); }
|
cannam@147
|
668 inline ~WaitScope() { loop.leaveScope(); }
|
cannam@147
|
669 KJ_DISALLOW_COPY(WaitScope);
|
cannam@147
|
670
|
cannam@147
|
671 private:
|
cannam@147
|
672 EventLoop& loop;
|
cannam@147
|
673 friend class EventLoop;
|
cannam@147
|
674 friend void _::waitImpl(Own<_::PromiseNode>&& node, _::ExceptionOrValue& result,
|
cannam@147
|
675 WaitScope& waitScope);
|
cannam@147
|
676 };
|
cannam@147
|
677
|
cannam@147
|
678 } // namespace kj
|
cannam@147
|
679
|
cannam@147
|
680 #include "async-inl.h"
|
cannam@147
|
681
|
cannam@147
|
682 #endif // KJ_ASYNC_H_
|