cannam@147
|
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
cannam@147
|
2 // Licensed under the MIT License:
|
cannam@147
|
3 //
|
cannam@147
|
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
|
cannam@147
|
5 // of this software and associated documentation files (the "Software"), to deal
|
cannam@147
|
6 // in the Software without restriction, including without limitation the rights
|
cannam@147
|
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
cannam@147
|
8 // copies of the Software, and to permit persons to whom the Software is
|
cannam@147
|
9 // furnished to do so, subject to the following conditions:
|
cannam@147
|
10 //
|
cannam@147
|
11 // The above copyright notice and this permission notice shall be included in
|
cannam@147
|
12 // all copies or substantial portions of the Software.
|
cannam@147
|
13 //
|
cannam@147
|
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
cannam@147
|
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
cannam@147
|
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
cannam@147
|
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
cannam@147
|
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
cannam@147
|
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
cannam@147
|
20 // THE SOFTWARE.
|
cannam@147
|
21
|
cannam@147
|
22 #ifndef KJ_ASYNC_IO_H_
|
cannam@147
|
23 #define KJ_ASYNC_IO_H_
|
cannam@147
|
24
|
cannam@147
|
25 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
|
cannam@147
|
26 #pragma GCC system_header
|
cannam@147
|
27 #endif
|
cannam@147
|
28
|
cannam@147
|
29 #include "async.h"
|
cannam@147
|
30 #include "function.h"
|
cannam@147
|
31 #include "thread.h"
|
cannam@147
|
32 #include "time.h"
|
cannam@147
|
33
|
cannam@147
|
34 struct sockaddr;
|
cannam@147
|
35
|
cannam@147
|
36 namespace kj {
|
cannam@147
|
37
|
cannam@147
|
38 #if _WIN32
|
cannam@147
|
39 class Win32EventPort;
|
cannam@147
|
40 #else
|
cannam@147
|
41 class UnixEventPort;
|
cannam@147
|
42 #endif
|
cannam@147
|
43
|
cannam@147
|
44 class NetworkAddress;
|
cannam@147
|
45 class AsyncOutputStream;
|
cannam@147
|
46
|
cannam@147
|
47 // =======================================================================================
|
cannam@147
|
48 // Streaming I/O
|
cannam@147
|
49
|
cannam@147
|
50 class AsyncInputStream {
|
cannam@147
|
51 // Asynchronous equivalent of InputStream (from io.h).
|
cannam@147
|
52
|
cannam@147
|
53 public:
|
cannam@147
|
54 virtual Promise<size_t> read(void* buffer, size_t minBytes, size_t maxBytes);
|
cannam@147
|
55 virtual Promise<size_t> tryRead(void* buffer, size_t minBytes, size_t maxBytes) = 0;
|
cannam@147
|
56
|
cannam@147
|
57 Promise<void> read(void* buffer, size_t bytes);
|
cannam@147
|
58
|
cannam@147
|
59 virtual Maybe<uint64_t> tryGetLength();
|
cannam@147
|
60 // Get the remaining number of bytes that will be produced by this stream, if known.
|
cannam@147
|
61 //
|
cannam@147
|
62 // This is used e.g. to fill in the Content-Length header of an HTTP message. If unknown, the
|
cannam@147
|
63 // HTTP implementation may need to fall back to Transfer-Encoding: chunked.
|
cannam@147
|
64 //
|
cannam@147
|
65 // The default implementation always returns null.
|
cannam@147
|
66
|
cannam@147
|
67 virtual Promise<uint64_t> pumpTo(
|
cannam@147
|
68 AsyncOutputStream& output, uint64_t amount = kj::maxValue);
|
cannam@147
|
69 // Read `amount` bytes from this stream (or to EOF) and write them to `output`, returning the
|
cannam@147
|
70 // total bytes actually pumped (which is only less than `amount` if EOF was reached).
|
cannam@147
|
71 //
|
cannam@147
|
72 // Override this if your stream type knows how to pump itself to certain kinds of output
|
cannam@147
|
73 // streams more efficiently than via the naive approach. You can use
|
cannam@147
|
74 // kj::dynamicDowncastIfAvailable() to test for stream types you recognize, and if none match,
|
cannam@147
|
75 // delegate to the default implementation.
|
cannam@147
|
76 //
|
cannam@147
|
77 // The default implementation first tries calling output.tryPumpFrom(), but if that fails, it
|
cannam@147
|
78 // performs a naive pump by allocating a buffer and reading to it / writing from it in a loop.
|
cannam@147
|
79
|
cannam@147
|
80 Promise<Array<byte>> readAllBytes();
|
cannam@147
|
81 Promise<String> readAllText();
|
cannam@147
|
82 // Read until EOF and return as one big byte array or string.
|
cannam@147
|
83 };
|
cannam@147
|
84
|
cannam@147
|
85 class AsyncOutputStream {
|
cannam@147
|
86 // Asynchronous equivalent of OutputStream (from io.h).
|
cannam@147
|
87
|
cannam@147
|
88 public:
|
cannam@147
|
89 virtual Promise<void> write(const void* buffer, size_t size) = 0;
|
cannam@147
|
90 virtual Promise<void> write(ArrayPtr<const ArrayPtr<const byte>> pieces) = 0;
|
cannam@147
|
91
|
cannam@147
|
92 virtual Maybe<Promise<uint64_t>> tryPumpFrom(
|
cannam@147
|
93 AsyncInputStream& input, uint64_t amount = kj::maxValue);
|
cannam@147
|
94 // Implements double-dispatch for AsyncInputStream::pumpTo().
|
cannam@147
|
95 //
|
cannam@147
|
96 // This method should only be called from within an implementation of pumpTo().
|
cannam@147
|
97 //
|
cannam@147
|
98 // This method examines the type of `input` to find optimized ways to pump data from it to this
|
cannam@147
|
99 // output stream. If it finds one, it performs the pump. Otherwise, it returns null.
|
cannam@147
|
100 //
|
cannam@147
|
101 // The default implementation always returns null.
|
cannam@147
|
102 };
|
cannam@147
|
103
|
cannam@147
|
104 class AsyncIoStream: public AsyncInputStream, public AsyncOutputStream {
|
cannam@147
|
105 // A combination input and output stream.
|
cannam@147
|
106
|
cannam@147
|
107 public:
|
cannam@147
|
108 virtual void shutdownWrite() = 0;
|
cannam@147
|
109 // Cleanly shut down just the write end of the stream, while keeping the read end open.
|
cannam@147
|
110
|
cannam@147
|
111 virtual void abortRead() {}
|
cannam@147
|
112 // Similar to shutdownWrite, but this will shut down the read end of the stream, and should only
|
cannam@147
|
113 // be called when an error has occurred.
|
cannam@147
|
114
|
cannam@147
|
115 virtual void getsockopt(int level, int option, void* value, uint* length);
|
cannam@147
|
116 virtual void setsockopt(int level, int option, const void* value, uint length);
|
cannam@147
|
117 // Corresponds to getsockopt() and setsockopt() syscalls. Will throw an "unimplemented" exception
|
cannam@147
|
118 // if the stream is not a socket or the option is not appropriate for the socket type. The
|
cannam@147
|
119 // default implementations always throw "unimplemented".
|
cannam@147
|
120
|
cannam@147
|
121 virtual void getsockname(struct sockaddr* addr, uint* length);
|
cannam@147
|
122 virtual void getpeername(struct sockaddr* addr, uint* length);
|
cannam@147
|
123 // Corresponds to getsockname() and getpeername() syscalls. Will throw an "unimplemented"
|
cannam@147
|
124 // exception if the stream is not a socket. The default implementations always throw
|
cannam@147
|
125 // "unimplemented".
|
cannam@147
|
126 //
|
cannam@147
|
127 // Note that we don't provide methods that return NetworkAddress because it usually wouldn't
|
cannam@147
|
128 // be useful. You can't connect() to or listen() on these addresses, obviously, because they are
|
cannam@147
|
129 // ephemeral addresses for a single connection.
|
cannam@147
|
130 };
|
cannam@147
|
131
|
cannam@147
|
132 struct OneWayPipe {
|
cannam@147
|
133 // A data pipe with an input end and an output end. (Typically backed by pipe() system call.)
|
cannam@147
|
134
|
cannam@147
|
135 Own<AsyncInputStream> in;
|
cannam@147
|
136 Own<AsyncOutputStream> out;
|
cannam@147
|
137 };
|
cannam@147
|
138
|
cannam@147
|
139 struct TwoWayPipe {
|
cannam@147
|
140 // A data pipe that supports sending in both directions. Each end's output sends data to the
|
cannam@147
|
141 // other end's input. (Typically backed by socketpair() system call.)
|
cannam@147
|
142
|
cannam@147
|
143 Own<AsyncIoStream> ends[2];
|
cannam@147
|
144 };
|
cannam@147
|
145
|
cannam@147
|
146 class ConnectionReceiver {
|
cannam@147
|
147 // Represents a server socket listening on a port.
|
cannam@147
|
148
|
cannam@147
|
149 public:
|
cannam@147
|
150 virtual Promise<Own<AsyncIoStream>> accept() = 0;
|
cannam@147
|
151 // Accept the next incoming connection.
|
cannam@147
|
152
|
cannam@147
|
153 virtual uint getPort() = 0;
|
cannam@147
|
154 // Gets the port number, if applicable (i.e. if listening on IP). This is useful if you didn't
|
cannam@147
|
155 // specify a port when constructing the NetworkAddress -- one will have been assigned
|
cannam@147
|
156 // automatically.
|
cannam@147
|
157
|
cannam@147
|
158 virtual void getsockopt(int level, int option, void* value, uint* length);
|
cannam@147
|
159 virtual void setsockopt(int level, int option, const void* value, uint length);
|
cannam@147
|
160 // Same as the methods of AsyncIoStream.
|
cannam@147
|
161 };
|
cannam@147
|
162
|
cannam@147
|
163 // =======================================================================================
|
cannam@147
|
164 // Datagram I/O
|
cannam@147
|
165
|
cannam@147
|
166 class AncillaryMessage {
|
cannam@147
|
167 // Represents an ancillary message (aka control message) received using the recvmsg() system
|
cannam@147
|
168 // call (or equivalent). Most apps will not use this.
|
cannam@147
|
169
|
cannam@147
|
170 public:
|
cannam@147
|
171 inline AncillaryMessage(int level, int type, ArrayPtr<const byte> data);
|
cannam@147
|
172 AncillaryMessage() = default;
|
cannam@147
|
173
|
cannam@147
|
174 inline int getLevel() const;
|
cannam@147
|
175 // Originating protocol / socket level.
|
cannam@147
|
176
|
cannam@147
|
177 inline int getType() const;
|
cannam@147
|
178 // Protocol-specific message type.
|
cannam@147
|
179
|
cannam@147
|
180 template <typename T>
|
cannam@147
|
181 inline Maybe<const T&> as();
|
cannam@147
|
182 // Interpret the ancillary message as the given struct type. Most ancillary messages are some
|
cannam@147
|
183 // sort of struct, so this is a convenient way to access it. Returns nullptr if the message
|
cannam@147
|
184 // is smaller than the struct -- this can happen if the message was truncated due to
|
cannam@147
|
185 // insufficient ancillary buffer space.
|
cannam@147
|
186
|
cannam@147
|
187 template <typename T>
|
cannam@147
|
188 inline ArrayPtr<const T> asArray();
|
cannam@147
|
189 // Interpret the ancillary message as an array of items. If the message size does not evenly
|
cannam@147
|
190 // divide into elements of type T, the remainder is discarded -- this can happen if the message
|
cannam@147
|
191 // was truncated due to insufficient ancillary buffer space.
|
cannam@147
|
192
|
cannam@147
|
193 private:
|
cannam@147
|
194 int level;
|
cannam@147
|
195 int type;
|
cannam@147
|
196 ArrayPtr<const byte> data;
|
cannam@147
|
197 // Message data. In most cases you should use `as()` or `asArray()`.
|
cannam@147
|
198 };
|
cannam@147
|
199
|
cannam@147
|
200 class DatagramReceiver {
|
cannam@147
|
201 // Class encapsulating the recvmsg() system call. You must specify the DatagramReceiver's
|
cannam@147
|
202 // capacity in advance; if a received packet is larger than the capacity, it will be truncated.
|
cannam@147
|
203
|
cannam@147
|
204 public:
|
cannam@147
|
205 virtual Promise<void> receive() = 0;
|
cannam@147
|
206 // Receive a new message, overwriting this object's content.
|
cannam@147
|
207 //
|
cannam@147
|
208 // receive() may reuse the same buffers for content and ancillary data with each call.
|
cannam@147
|
209
|
cannam@147
|
210 template <typename T>
|
cannam@147
|
211 struct MaybeTruncated {
|
cannam@147
|
212 T value;
|
cannam@147
|
213
|
cannam@147
|
214 bool isTruncated;
|
cannam@147
|
215 // True if the Receiver's capacity was insufficient to receive the value and therefore the
|
cannam@147
|
216 // value is truncated.
|
cannam@147
|
217 };
|
cannam@147
|
218
|
cannam@147
|
219 virtual MaybeTruncated<ArrayPtr<const byte>> getContent() = 0;
|
cannam@147
|
220 // Get the content of the datagram.
|
cannam@147
|
221
|
cannam@147
|
222 virtual MaybeTruncated<ArrayPtr<const AncillaryMessage>> getAncillary() = 0;
|
cannam@147
|
223 // Ancilarry messages received with the datagram. See the recvmsg() system call and the cmsghdr
|
cannam@147
|
224 // struct. Most apps don't need this.
|
cannam@147
|
225 //
|
cannam@147
|
226 // If the returned value is truncated, then the last message in the array may itself be
|
cannam@147
|
227 // truncated, meaning its as<T>() method will return nullptr or its asArray<T>() method will
|
cannam@147
|
228 // return fewer elements than expected. Truncation can also mean that additional messages were
|
cannam@147
|
229 // available but discarded.
|
cannam@147
|
230
|
cannam@147
|
231 virtual NetworkAddress& getSource() = 0;
|
cannam@147
|
232 // Get the datagram sender's address.
|
cannam@147
|
233
|
cannam@147
|
234 struct Capacity {
|
cannam@147
|
235 size_t content = 8192;
|
cannam@147
|
236 // How much space to allocate for the datagram content. If a datagram is received that is
|
cannam@147
|
237 // larger than this, it will be truncated, with no way to recover the tail.
|
cannam@147
|
238
|
cannam@147
|
239 size_t ancillary = 0;
|
cannam@147
|
240 // How much space to allocate for ancillary messages. As with content, if the ancillary data
|
cannam@147
|
241 // is larger than this, it will be truncated.
|
cannam@147
|
242 };
|
cannam@147
|
243 };
|
cannam@147
|
244
|
cannam@147
|
245 class DatagramPort {
|
cannam@147
|
246 public:
|
cannam@147
|
247 virtual Promise<size_t> send(const void* buffer, size_t size, NetworkAddress& destination) = 0;
|
cannam@147
|
248 virtual Promise<size_t> send(ArrayPtr<const ArrayPtr<const byte>> pieces,
|
cannam@147
|
249 NetworkAddress& destination) = 0;
|
cannam@147
|
250
|
cannam@147
|
251 virtual Own<DatagramReceiver> makeReceiver(
|
cannam@147
|
252 DatagramReceiver::Capacity capacity = DatagramReceiver::Capacity()) = 0;
|
cannam@147
|
253 // Create a new `Receiver` that can be used to receive datagrams. `capacity` specifies how much
|
cannam@147
|
254 // space to allocate for the received message. The `DatagramPort` must outlive the `Receiver`.
|
cannam@147
|
255
|
cannam@147
|
256 virtual uint getPort() = 0;
|
cannam@147
|
257 // Gets the port number, if applicable (i.e. if listening on IP). This is useful if you didn't
|
cannam@147
|
258 // specify a port when constructing the NetworkAddress -- one will have been assigned
|
cannam@147
|
259 // automatically.
|
cannam@147
|
260
|
cannam@147
|
261 virtual void getsockopt(int level, int option, void* value, uint* length);
|
cannam@147
|
262 virtual void setsockopt(int level, int option, const void* value, uint length);
|
cannam@147
|
263 // Same as the methods of AsyncIoStream.
|
cannam@147
|
264 };
|
cannam@147
|
265
|
cannam@147
|
266 // =======================================================================================
|
cannam@147
|
267 // Networks
|
cannam@147
|
268
|
cannam@147
|
269 class NetworkAddress {
|
cannam@147
|
270 // Represents a remote address to which the application can connect.
|
cannam@147
|
271
|
cannam@147
|
272 public:
|
cannam@147
|
273 virtual Promise<Own<AsyncIoStream>> connect() = 0;
|
cannam@147
|
274 // Make a new connection to this address.
|
cannam@147
|
275 //
|
cannam@147
|
276 // The address must not be a wildcard ("*"). If it is an IP address, it must have a port number.
|
cannam@147
|
277
|
cannam@147
|
278 virtual Own<ConnectionReceiver> listen() = 0;
|
cannam@147
|
279 // Listen for incoming connections on this address.
|
cannam@147
|
280 //
|
cannam@147
|
281 // The address must be local.
|
cannam@147
|
282
|
cannam@147
|
283 virtual Own<DatagramPort> bindDatagramPort();
|
cannam@147
|
284 // Open this address as a datagram (e.g. UDP) port.
|
cannam@147
|
285 //
|
cannam@147
|
286 // The address must be local.
|
cannam@147
|
287
|
cannam@147
|
288 virtual Own<NetworkAddress> clone() = 0;
|
cannam@147
|
289 // Returns an equivalent copy of this NetworkAddress.
|
cannam@147
|
290
|
cannam@147
|
291 virtual String toString() = 0;
|
cannam@147
|
292 // Produce a human-readable string which hopefully can be passed to Network::parseAddress()
|
cannam@147
|
293 // to reproduce this address, although whether or not that works of course depends on the Network
|
cannam@147
|
294 // implementation. This should be called only to display the address to human users, who will
|
cannam@147
|
295 // hopefully know what they are able to do with it.
|
cannam@147
|
296 };
|
cannam@147
|
297
|
cannam@147
|
298 class Network {
|
cannam@147
|
299 // Factory for NetworkAddress instances, representing the network services offered by the
|
cannam@147
|
300 // operating system.
|
cannam@147
|
301 //
|
cannam@147
|
302 // This interface typically represents broad authority, and well-designed code should limit its
|
cannam@147
|
303 // use to high-level startup code and user interaction. Low-level APIs should accept
|
cannam@147
|
304 // NetworkAddress instances directly and work from there, if at all possible.
|
cannam@147
|
305
|
cannam@147
|
306 public:
|
cannam@147
|
307 virtual Promise<Own<NetworkAddress>> parseAddress(StringPtr addr, uint portHint = 0) = 0;
|
cannam@147
|
308 // Construct a network address from a user-provided string. The format of the address
|
cannam@147
|
309 // strings is not specified at the API level, and application code should make no assumptions
|
cannam@147
|
310 // about them. These strings should always be provided by humans, and said humans will know
|
cannam@147
|
311 // what format to use in their particular context.
|
cannam@147
|
312 //
|
cannam@147
|
313 // `portHint`, if provided, specifies the "standard" IP port number for the application-level
|
cannam@147
|
314 // service in play. If the address turns out to be an IP address (v4 or v6), and it lacks a
|
cannam@147
|
315 // port number, this port will be used. If `addr` lacks a port number *and* `portHint` is
|
cannam@147
|
316 // omitted, then the returned address will only support listen() and bindDatagramPort()
|
cannam@147
|
317 // (not connect()), and an unused port will be chosen each time one of those methods is called.
|
cannam@147
|
318
|
cannam@147
|
319 virtual Own<NetworkAddress> getSockaddr(const void* sockaddr, uint len) = 0;
|
cannam@147
|
320 // Construct a network address from a legacy struct sockaddr.
|
cannam@147
|
321 };
|
cannam@147
|
322
|
cannam@147
|
323 // =======================================================================================
|
cannam@147
|
324 // I/O Provider
|
cannam@147
|
325
|
cannam@147
|
326 class AsyncIoProvider {
|
cannam@147
|
327 // Class which constructs asynchronous wrappers around the operating system's I/O facilities.
|
cannam@147
|
328 //
|
cannam@147
|
329 // Generally, the implementation of this interface must integrate closely with a particular
|
cannam@147
|
330 // `EventLoop` implementation. Typically, the EventLoop implementation itself will provide
|
cannam@147
|
331 // an AsyncIoProvider.
|
cannam@147
|
332
|
cannam@147
|
333 public:
|
cannam@147
|
334 virtual OneWayPipe newOneWayPipe() = 0;
|
cannam@147
|
335 // Creates an input/output stream pair representing the ends of a one-way pipe (e.g. created with
|
cannam@147
|
336 // the pipe(2) system call).
|
cannam@147
|
337
|
cannam@147
|
338 virtual TwoWayPipe newTwoWayPipe() = 0;
|
cannam@147
|
339 // Creates two AsyncIoStreams representing the two ends of a two-way pipe (e.g. created with
|
cannam@147
|
340 // socketpair(2) system call). Data written to one end can be read from the other.
|
cannam@147
|
341
|
cannam@147
|
342 virtual Network& getNetwork() = 0;
|
cannam@147
|
343 // Creates a new `Network` instance representing the networks exposed by the operating system.
|
cannam@147
|
344 //
|
cannam@147
|
345 // DO NOT CALL THIS except at the highest levels of your code, ideally in the main() function. If
|
cannam@147
|
346 // you call this from low-level code, then you are preventing higher-level code from injecting an
|
cannam@147
|
347 // alternative implementation. Instead, if your code needs to use network functionality, it
|
cannam@147
|
348 // should ask for a `Network` as a constructor or method parameter, so that higher-level code can
|
cannam@147
|
349 // chose what implementation to use. The system network is essentially a singleton. See:
|
cannam@147
|
350 // http://www.object-oriented-security.org/lets-argue/singletons
|
cannam@147
|
351 //
|
cannam@147
|
352 // Code that uses the system network should not make any assumptions about what kinds of
|
cannam@147
|
353 // addresses it will parse, as this could differ across platforms. String addresses should come
|
cannam@147
|
354 // strictly from the user, who will know how to write them correctly for their system.
|
cannam@147
|
355 //
|
cannam@147
|
356 // With that said, KJ currently supports the following string address formats:
|
cannam@147
|
357 // - IPv4: "1.2.3.4", "1.2.3.4:80"
|
cannam@147
|
358 // - IPv6: "1234:5678::abcd", "[1234:5678::abcd]:80"
|
cannam@147
|
359 // - Local IP wildcard (covers both v4 and v6): "*", "*:80"
|
cannam@147
|
360 // - Symbolic names: "example.com", "example.com:80", "example.com:http", "1.2.3.4:http"
|
cannam@147
|
361 // - Unix domain: "unix:/path/to/socket"
|
cannam@147
|
362
|
cannam@147
|
363 struct PipeThread {
|
cannam@147
|
364 // A combination of a thread and a two-way pipe that communicates with that thread.
|
cannam@147
|
365 //
|
cannam@147
|
366 // The fields are intentionally ordered so that the pipe will be destroyed (and therefore
|
cannam@147
|
367 // disconnected) before the thread is destroyed (and therefore joined). Thus if the thread
|
cannam@147
|
368 // arranges to exit when it detects disconnect, destruction should be clean.
|
cannam@147
|
369
|
cannam@147
|
370 Own<Thread> thread;
|
cannam@147
|
371 Own<AsyncIoStream> pipe;
|
cannam@147
|
372 };
|
cannam@147
|
373
|
cannam@147
|
374 virtual PipeThread newPipeThread(
|
cannam@147
|
375 Function<void(AsyncIoProvider&, AsyncIoStream&, WaitScope&)> startFunc) = 0;
|
cannam@147
|
376 // Create a new thread and set up a two-way pipe (socketpair) which can be used to communicate
|
cannam@147
|
377 // with it. One end of the pipe is passed to the thread's start function and the other end of
|
cannam@147
|
378 // the pipe is returned. The new thread also gets its own `AsyncIoProvider` instance and will
|
cannam@147
|
379 // already have an active `EventLoop` when `startFunc` is called.
|
cannam@147
|
380 //
|
cannam@147
|
381 // TODO(someday): I'm not entirely comfortable with this interface. It seems to be doing too
|
cannam@147
|
382 // much at once but I'm not sure how to cleanly break it down.
|
cannam@147
|
383
|
cannam@147
|
384 virtual Timer& getTimer() = 0;
|
cannam@147
|
385 // Returns a `Timer` based on real time. Time does not pass while event handlers are running --
|
cannam@147
|
386 // it only updates when the event loop polls for system events. This means that calling `now()`
|
cannam@147
|
387 // on this timer does not require a system call.
|
cannam@147
|
388 //
|
cannam@147
|
389 // This timer is not affected by changes to the system date. It is unspecified whether the timer
|
cannam@147
|
390 // continues to count while the system is suspended.
|
cannam@147
|
391 };
|
cannam@147
|
392
|
cannam@147
|
393 class LowLevelAsyncIoProvider {
|
cannam@147
|
394 // Similar to `AsyncIoProvider`, but represents a lower-level interface that may differ on
|
cannam@147
|
395 // different operating systems. You should prefer to use `AsyncIoProvider` over this interface
|
cannam@147
|
396 // whenever possible, as `AsyncIoProvider` is portable and friendlier to dependency-injection.
|
cannam@147
|
397 //
|
cannam@147
|
398 // On Unix, this interface can be used to import native file descriptors into the async framework.
|
cannam@147
|
399 // Different implementations of this interface might work on top of different event handling
|
cannam@147
|
400 // primitives, such as poll vs. epoll vs. kqueue vs. some higher-level event library.
|
cannam@147
|
401 //
|
cannam@147
|
402 // On Windows, this interface can be used to import native HANDLEs into the async framework.
|
cannam@147
|
403 // Different implementations of this interface might work on top of different event handling
|
cannam@147
|
404 // primitives, such as I/O completion ports vs. completion routines.
|
cannam@147
|
405 //
|
cannam@147
|
406 // TODO(port): Actually implement Windows support.
|
cannam@147
|
407
|
cannam@147
|
408 public:
|
cannam@147
|
409 // ---------------------------------------------------------------------------
|
cannam@147
|
410 // Unix-specific stuff
|
cannam@147
|
411
|
cannam@147
|
412 enum Flags {
|
cannam@147
|
413 // Flags controlling how to wrap a file descriptor.
|
cannam@147
|
414
|
cannam@147
|
415 TAKE_OWNERSHIP = 1 << 0,
|
cannam@147
|
416 // The returned object should own the file descriptor, automatically closing it when destroyed.
|
cannam@147
|
417 // The close-on-exec flag will be set on the descriptor if it is not already.
|
cannam@147
|
418 //
|
cannam@147
|
419 // If this flag is not used, then the file descriptor is not automatically closed and the
|
cannam@147
|
420 // close-on-exec flag is not modified.
|
cannam@147
|
421
|
cannam@147
|
422 #if !_WIN32
|
cannam@147
|
423 ALREADY_CLOEXEC = 1 << 1,
|
cannam@147
|
424 // Indicates that the close-on-exec flag is known already to be set, so need not be set again.
|
cannam@147
|
425 // Only relevant when combined with TAKE_OWNERSHIP.
|
cannam@147
|
426 //
|
cannam@147
|
427 // On Linux, all system calls which yield new file descriptors have flags or variants which
|
cannam@147
|
428 // set the close-on-exec flag immediately. Unfortunately, other OS's do not.
|
cannam@147
|
429
|
cannam@147
|
430 ALREADY_NONBLOCK = 1 << 2
|
cannam@147
|
431 // Indicates that the file descriptor is known already to be in non-blocking mode, so the flag
|
cannam@147
|
432 // need not be set again. Otherwise, all wrap*Fd() methods will enable non-blocking mode
|
cannam@147
|
433 // automatically.
|
cannam@147
|
434 //
|
cannam@147
|
435 // On Linux, all system calls which yield new file descriptors have flags or variants which
|
cannam@147
|
436 // enable non-blocking mode immediately. Unfortunately, other OS's do not.
|
cannam@147
|
437 #endif
|
cannam@147
|
438 };
|
cannam@147
|
439
|
cannam@147
|
440 #if _WIN32
|
cannam@147
|
441 typedef uintptr_t Fd;
|
cannam@147
|
442 // On Windows, the `fd` parameter to each of these methods must be a SOCKET, and must have the
|
cannam@147
|
443 // flag WSA_FLAG_OVERLAPPED (which socket() uses by default, but WSASocket() wants you to specify
|
cannam@147
|
444 // explicitly).
|
cannam@147
|
445 #else
|
cannam@147
|
446 typedef int Fd;
|
cannam@147
|
447 // On Unix, any arbitrary file descriptor is supported.
|
cannam@147
|
448 #endif
|
cannam@147
|
449
|
cannam@147
|
450 virtual Own<AsyncInputStream> wrapInputFd(Fd fd, uint flags = 0) = 0;
|
cannam@147
|
451 // Create an AsyncInputStream wrapping a file descriptor.
|
cannam@147
|
452 //
|
cannam@147
|
453 // `flags` is a bitwise-OR of the values of the `Flags` enum.
|
cannam@147
|
454
|
cannam@147
|
455 virtual Own<AsyncOutputStream> wrapOutputFd(Fd fd, uint flags = 0) = 0;
|
cannam@147
|
456 // Create an AsyncOutputStream wrapping a file descriptor.
|
cannam@147
|
457 //
|
cannam@147
|
458 // `flags` is a bitwise-OR of the values of the `Flags` enum.
|
cannam@147
|
459
|
cannam@147
|
460 virtual Own<AsyncIoStream> wrapSocketFd(Fd fd, uint flags = 0) = 0;
|
cannam@147
|
461 // Create an AsyncIoStream wrapping a socket file descriptor.
|
cannam@147
|
462 //
|
cannam@147
|
463 // `flags` is a bitwise-OR of the values of the `Flags` enum.
|
cannam@147
|
464
|
cannam@147
|
465 virtual Promise<Own<AsyncIoStream>> wrapConnectingSocketFd(
|
cannam@147
|
466 Fd fd, const struct sockaddr* addr, uint addrlen, uint flags = 0) = 0;
|
cannam@147
|
467 // Create an AsyncIoStream wrapping a socket and initiate a connection to the given address.
|
cannam@147
|
468 // The returned promise does not resolve until connection has completed.
|
cannam@147
|
469 //
|
cannam@147
|
470 // `flags` is a bitwise-OR of the values of the `Flags` enum.
|
cannam@147
|
471
|
cannam@147
|
472 virtual Own<ConnectionReceiver> wrapListenSocketFd(Fd fd, uint flags = 0) = 0;
|
cannam@147
|
473 // Create an AsyncIoStream wrapping a listen socket file descriptor. This socket should already
|
cannam@147
|
474 // have had `bind()` and `listen()` called on it, so it's ready for `accept()`.
|
cannam@147
|
475 //
|
cannam@147
|
476 // `flags` is a bitwise-OR of the values of the `Flags` enum.
|
cannam@147
|
477
|
cannam@147
|
478 virtual Own<DatagramPort> wrapDatagramSocketFd(Fd fd, uint flags = 0);
|
cannam@147
|
479
|
cannam@147
|
480 virtual Timer& getTimer() = 0;
|
cannam@147
|
481 // Returns a `Timer` based on real time. Time does not pass while event handlers are running --
|
cannam@147
|
482 // it only updates when the event loop polls for system events. This means that calling `now()`
|
cannam@147
|
483 // on this timer does not require a system call.
|
cannam@147
|
484 //
|
cannam@147
|
485 // This timer is not affected by changes to the system date. It is unspecified whether the timer
|
cannam@147
|
486 // continues to count while the system is suspended.
|
cannam@147
|
487 };
|
cannam@147
|
488
|
cannam@147
|
489 Own<AsyncIoProvider> newAsyncIoProvider(LowLevelAsyncIoProvider& lowLevel);
|
cannam@147
|
490 // Make a new AsyncIoProvider wrapping a `LowLevelAsyncIoProvider`.
|
cannam@147
|
491
|
cannam@147
|
492 struct AsyncIoContext {
|
cannam@147
|
493 Own<LowLevelAsyncIoProvider> lowLevelProvider;
|
cannam@147
|
494 Own<AsyncIoProvider> provider;
|
cannam@147
|
495 WaitScope& waitScope;
|
cannam@147
|
496
|
cannam@147
|
497 #if _WIN32
|
cannam@147
|
498 Win32EventPort& win32EventPort;
|
cannam@147
|
499 #else
|
cannam@147
|
500 UnixEventPort& unixEventPort;
|
cannam@147
|
501 // TEMPORARY: Direct access to underlying UnixEventPort, mainly for waiting on signals. This
|
cannam@147
|
502 // field will go away at some point when we have a chance to improve these interfaces.
|
cannam@147
|
503 #endif
|
cannam@147
|
504 };
|
cannam@147
|
505
|
cannam@147
|
506 AsyncIoContext setupAsyncIo();
|
cannam@147
|
507 // Convenience method which sets up the current thread with everything it needs to do async I/O.
|
cannam@147
|
508 // The returned objects contain an `EventLoop` which is wrapping an appropriate `EventPort` for
|
cannam@147
|
509 // doing I/O on the host system, so everything is ready for the thread to start making async calls
|
cannam@147
|
510 // and waiting on promises.
|
cannam@147
|
511 //
|
cannam@147
|
512 // You would typically call this in your main() loop or in the start function of a thread.
|
cannam@147
|
513 // Example:
|
cannam@147
|
514 //
|
cannam@147
|
515 // int main() {
|
cannam@147
|
516 // auto ioContext = kj::setupAsyncIo();
|
cannam@147
|
517 //
|
cannam@147
|
518 // // Now we can call an async function.
|
cannam@147
|
519 // Promise<String> textPromise = getHttp(*ioContext.provider, "http://example.com");
|
cannam@147
|
520 //
|
cannam@147
|
521 // // And we can wait for the promise to complete. Note that you can only use `wait()`
|
cannam@147
|
522 // // from the top level, not from inside a promise callback.
|
cannam@147
|
523 // String text = textPromise.wait(ioContext.waitScope);
|
cannam@147
|
524 // print(text);
|
cannam@147
|
525 // return 0;
|
cannam@147
|
526 // }
|
cannam@147
|
527 //
|
cannam@147
|
528 // WARNING: An AsyncIoContext can only be used in the thread and process that created it. In
|
cannam@147
|
529 // particular, note that after a fork(), an AsyncIoContext created in the parent process will
|
cannam@147
|
530 // not work correctly in the child, even if the parent ceases to use its copy. In particular
|
cannam@147
|
531 // note that this means that server processes which daemonize themselves at startup must wait
|
cannam@147
|
532 // until after daemonization to create an AsyncIoContext.
|
cannam@147
|
533
|
cannam@147
|
534 // =======================================================================================
|
cannam@147
|
535 // inline implementation details
|
cannam@147
|
536
|
cannam@147
|
537 inline AncillaryMessage::AncillaryMessage(
|
cannam@147
|
538 int level, int type, ArrayPtr<const byte> data)
|
cannam@147
|
539 : level(level), type(type), data(data) {}
|
cannam@147
|
540
|
cannam@147
|
541 inline int AncillaryMessage::getLevel() const { return level; }
|
cannam@147
|
542 inline int AncillaryMessage::getType() const { return type; }
|
cannam@147
|
543
|
cannam@147
|
544 template <typename T>
|
cannam@147
|
545 inline Maybe<const T&> AncillaryMessage::as() {
|
cannam@147
|
546 if (data.size() >= sizeof(T)) {
|
cannam@147
|
547 return *reinterpret_cast<const T*>(data.begin());
|
cannam@147
|
548 } else {
|
cannam@147
|
549 return nullptr;
|
cannam@147
|
550 }
|
cannam@147
|
551 }
|
cannam@147
|
552
|
cannam@147
|
553 template <typename T>
|
cannam@147
|
554 inline ArrayPtr<const T> AncillaryMessage::asArray() {
|
cannam@147
|
555 return arrayPtr(reinterpret_cast<const T*>(data.begin()), data.size() / sizeof(T));
|
cannam@147
|
556 }
|
cannam@147
|
557
|
cannam@147
|
558 } // namespace kj
|
cannam@147
|
559
|
cannam@147
|
560 #endif // KJ_ASYNC_IO_H_
|