cannam@147
|
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
cannam@147
|
2 // Licensed under the MIT License:
|
cannam@147
|
3 //
|
cannam@147
|
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
|
cannam@147
|
5 // of this software and associated documentation files (the "Software"), to deal
|
cannam@147
|
6 // in the Software without restriction, including without limitation the rights
|
cannam@147
|
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
cannam@147
|
8 // copies of the Software, and to permit persons to whom the Software is
|
cannam@147
|
9 // furnished to do so, subject to the following conditions:
|
cannam@147
|
10 //
|
cannam@147
|
11 // The above copyright notice and this permission notice shall be included in
|
cannam@147
|
12 // all copies or substantial portions of the Software.
|
cannam@147
|
13 //
|
cannam@147
|
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
cannam@147
|
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
cannam@147
|
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
cannam@147
|
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
cannam@147
|
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
cannam@147
|
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
cannam@147
|
20 // THE SOFTWARE.
|
cannam@147
|
21
|
cannam@147
|
22 #ifndef KJ_ARRAY_H_
|
cannam@147
|
23 #define KJ_ARRAY_H_
|
cannam@147
|
24
|
cannam@147
|
25 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
|
cannam@147
|
26 #pragma GCC system_header
|
cannam@147
|
27 #endif
|
cannam@147
|
28
|
cannam@147
|
29 #include "common.h"
|
cannam@147
|
30 #include <string.h>
|
cannam@147
|
31 #include <initializer_list>
|
cannam@147
|
32
|
cannam@147
|
33 namespace kj {
|
cannam@147
|
34
|
cannam@147
|
35 // =======================================================================================
|
cannam@147
|
36 // ArrayDisposer -- Implementation details.
|
cannam@147
|
37
|
cannam@147
|
38 class ArrayDisposer {
|
cannam@147
|
39 // Much like Disposer from memory.h.
|
cannam@147
|
40
|
cannam@147
|
41 protected:
|
cannam@147
|
42 // Do not declare a destructor, as doing so will force a global initializer for
|
cannam@147
|
43 // HeapArrayDisposer::instance.
|
cannam@147
|
44
|
cannam@147
|
45 virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
|
cannam@147
|
46 size_t capacity, void (*destroyElement)(void*)) const = 0;
|
cannam@147
|
47 // Disposes of the array. `destroyElement` invokes the destructor of each element, or is nullptr
|
cannam@147
|
48 // if the elements have trivial destructors. `capacity` is the amount of space that was
|
cannam@147
|
49 // allocated while `elementCount` is the number of elements that were actually constructed;
|
cannam@147
|
50 // these are always the same number for Array<T> but may be different when using ArrayBuilder<T>.
|
cannam@147
|
51
|
cannam@147
|
52 public:
|
cannam@147
|
53
|
cannam@147
|
54 template <typename T>
|
cannam@147
|
55 void dispose(T* firstElement, size_t elementCount, size_t capacity) const;
|
cannam@147
|
56 // Helper wrapper around disposeImpl().
|
cannam@147
|
57 //
|
cannam@147
|
58 // Callers must not call dispose() on the same array twice, even if the first call throws
|
cannam@147
|
59 // an exception.
|
cannam@147
|
60
|
cannam@147
|
61 private:
|
cannam@147
|
62 template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)>
|
cannam@147
|
63 struct Dispose_;
|
cannam@147
|
64 };
|
cannam@147
|
65
|
cannam@147
|
66 class ExceptionSafeArrayUtil {
|
cannam@147
|
67 // Utility class that assists in constructing or destroying elements of an array, where the
|
cannam@147
|
68 // constructor or destructor could throw exceptions. In case of an exception,
|
cannam@147
|
69 // ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been
|
cannam@147
|
70 // constructed but not destroyed. Remember that destructors that throw exceptions are required
|
cannam@147
|
71 // to use UnwindDetector to detect unwind and avoid exceptions in this case. Therefore, no more
|
cannam@147
|
72 // than one exception will be thrown (and the program will not terminate).
|
cannam@147
|
73
|
cannam@147
|
74 public:
|
cannam@147
|
75 inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount,
|
cannam@147
|
76 void (*destroyElement)(void*))
|
cannam@147
|
77 : pos(reinterpret_cast<byte*>(ptr) + elementSize * constructedElementCount),
|
cannam@147
|
78 elementSize(elementSize), constructedElementCount(constructedElementCount),
|
cannam@147
|
79 destroyElement(destroyElement) {}
|
cannam@147
|
80 KJ_DISALLOW_COPY(ExceptionSafeArrayUtil);
|
cannam@147
|
81
|
cannam@147
|
82 inline ~ExceptionSafeArrayUtil() noexcept(false) {
|
cannam@147
|
83 if (constructedElementCount > 0) destroyAll();
|
cannam@147
|
84 }
|
cannam@147
|
85
|
cannam@147
|
86 void construct(size_t count, void (*constructElement)(void*));
|
cannam@147
|
87 // Construct the given number of elements.
|
cannam@147
|
88
|
cannam@147
|
89 void destroyAll();
|
cannam@147
|
90 // Destroy all elements. Call this immediately before ExceptionSafeArrayUtil goes out-of-scope
|
cannam@147
|
91 // to ensure that one element throwing an exception does not prevent the others from being
|
cannam@147
|
92 // destroyed.
|
cannam@147
|
93
|
cannam@147
|
94 void release() { constructedElementCount = 0; }
|
cannam@147
|
95 // Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements.
|
cannam@147
|
96 // Call this after you've successfully finished constructing.
|
cannam@147
|
97
|
cannam@147
|
98 private:
|
cannam@147
|
99 byte* pos;
|
cannam@147
|
100 size_t elementSize;
|
cannam@147
|
101 size_t constructedElementCount;
|
cannam@147
|
102 void (*destroyElement)(void*);
|
cannam@147
|
103 };
|
cannam@147
|
104
|
cannam@147
|
105 class DestructorOnlyArrayDisposer: public ArrayDisposer {
|
cannam@147
|
106 public:
|
cannam@147
|
107 static const DestructorOnlyArrayDisposer instance;
|
cannam@147
|
108
|
cannam@147
|
109 void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
|
cannam@147
|
110 size_t capacity, void (*destroyElement)(void*)) const override;
|
cannam@147
|
111 };
|
cannam@147
|
112
|
cannam@147
|
113 class NullArrayDisposer: public ArrayDisposer {
|
cannam@147
|
114 // An ArrayDisposer that does nothing. Can be used to construct a fake Arrays that doesn't
|
cannam@147
|
115 // actually own its content.
|
cannam@147
|
116
|
cannam@147
|
117 public:
|
cannam@147
|
118 static const NullArrayDisposer instance;
|
cannam@147
|
119
|
cannam@147
|
120 void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
|
cannam@147
|
121 size_t capacity, void (*destroyElement)(void*)) const override;
|
cannam@147
|
122 };
|
cannam@147
|
123
|
cannam@147
|
124 // =======================================================================================
|
cannam@147
|
125 // Array
|
cannam@147
|
126
|
cannam@147
|
127 template <typename T>
|
cannam@147
|
128 class Array {
|
cannam@147
|
129 // An owned array which will automatically be disposed of (using an ArrayDisposer) in the
|
cannam@147
|
130 // destructor. Can be moved, but not copied. Much like Own<T>, but for arrays rather than
|
cannam@147
|
131 // single objects.
|
cannam@147
|
132
|
cannam@147
|
133 public:
|
cannam@147
|
134 inline Array(): ptr(nullptr), size_(0), disposer(nullptr) {}
|
cannam@147
|
135 inline Array(decltype(nullptr)): ptr(nullptr), size_(0), disposer(nullptr) {}
|
cannam@147
|
136 inline Array(Array&& other) noexcept
|
cannam@147
|
137 : ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
|
cannam@147
|
138 other.ptr = nullptr;
|
cannam@147
|
139 other.size_ = 0;
|
cannam@147
|
140 }
|
cannam@147
|
141 inline Array(Array<RemoveConstOrDisable<T>>&& other) noexcept
|
cannam@147
|
142 : ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
|
cannam@147
|
143 other.ptr = nullptr;
|
cannam@147
|
144 other.size_ = 0;
|
cannam@147
|
145 }
|
cannam@147
|
146 inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer)
|
cannam@147
|
147 : ptr(firstElement), size_(size), disposer(&disposer) {}
|
cannam@147
|
148
|
cannam@147
|
149 KJ_DISALLOW_COPY(Array);
|
cannam@147
|
150 inline ~Array() noexcept { dispose(); }
|
cannam@147
|
151
|
cannam@147
|
152 inline operator ArrayPtr<T>() {
|
cannam@147
|
153 return ArrayPtr<T>(ptr, size_);
|
cannam@147
|
154 }
|
cannam@147
|
155 inline operator ArrayPtr<const T>() const {
|
cannam@147
|
156 return ArrayPtr<T>(ptr, size_);
|
cannam@147
|
157 }
|
cannam@147
|
158 inline ArrayPtr<T> asPtr() {
|
cannam@147
|
159 return ArrayPtr<T>(ptr, size_);
|
cannam@147
|
160 }
|
cannam@147
|
161 inline ArrayPtr<const T> asPtr() const {
|
cannam@147
|
162 return ArrayPtr<T>(ptr, size_);
|
cannam@147
|
163 }
|
cannam@147
|
164
|
cannam@147
|
165 inline size_t size() const { return size_; }
|
cannam@147
|
166 inline T& operator[](size_t index) const {
|
cannam@147
|
167 KJ_IREQUIRE(index < size_, "Out-of-bounds Array access.");
|
cannam@147
|
168 return ptr[index];
|
cannam@147
|
169 }
|
cannam@147
|
170
|
cannam@147
|
171 inline const T* begin() const { return ptr; }
|
cannam@147
|
172 inline const T* end() const { return ptr + size_; }
|
cannam@147
|
173 inline const T& front() const { return *ptr; }
|
cannam@147
|
174 inline const T& back() const { return *(ptr + size_ - 1); }
|
cannam@147
|
175 inline T* begin() { return ptr; }
|
cannam@147
|
176 inline T* end() { return ptr + size_; }
|
cannam@147
|
177 inline T& front() { return *ptr; }
|
cannam@147
|
178 inline T& back() { return *(ptr + size_ - 1); }
|
cannam@147
|
179
|
cannam@147
|
180 inline ArrayPtr<T> slice(size_t start, size_t end) {
|
cannam@147
|
181 KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
|
cannam@147
|
182 return ArrayPtr<T>(ptr + start, end - start);
|
cannam@147
|
183 }
|
cannam@147
|
184 inline ArrayPtr<const T> slice(size_t start, size_t end) const {
|
cannam@147
|
185 KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
|
cannam@147
|
186 return ArrayPtr<const T>(ptr + start, end - start);
|
cannam@147
|
187 }
|
cannam@147
|
188
|
cannam@147
|
189 inline ArrayPtr<const byte> asBytes() const { return asPtr().asBytes(); }
|
cannam@147
|
190 inline ArrayPtr<PropagateConst<T, byte>> asBytes() { return asPtr().asBytes(); }
|
cannam@147
|
191 inline ArrayPtr<const char> asChars() const { return asPtr().asChars(); }
|
cannam@147
|
192 inline ArrayPtr<PropagateConst<T, char>> asChars() { return asPtr().asChars(); }
|
cannam@147
|
193
|
cannam@147
|
194 inline Array<PropagateConst<T, byte>> releaseAsBytes() {
|
cannam@147
|
195 // Like asBytes() but transfers ownership.
|
cannam@147
|
196 static_assert(sizeof(T) == sizeof(byte),
|
cannam@147
|
197 "releaseAsBytes() only possible on arrays with byte-size elements (e.g. chars).");
|
cannam@147
|
198 Array<PropagateConst<T, byte>> result(
|
cannam@147
|
199 reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_, *disposer);
|
cannam@147
|
200 ptr = nullptr;
|
cannam@147
|
201 size_ = 0;
|
cannam@147
|
202 return result;
|
cannam@147
|
203 }
|
cannam@147
|
204 inline Array<PropagateConst<T, char>> releaseAsChars() {
|
cannam@147
|
205 // Like asChars() but transfers ownership.
|
cannam@147
|
206 static_assert(sizeof(T) == sizeof(PropagateConst<T, char>),
|
cannam@147
|
207 "releaseAsChars() only possible on arrays with char-size elements (e.g. bytes).");
|
cannam@147
|
208 Array<PropagateConst<T, char>> result(
|
cannam@147
|
209 reinterpret_cast<PropagateConst<T, char>*>(ptr), size_, *disposer);
|
cannam@147
|
210 ptr = nullptr;
|
cannam@147
|
211 size_ = 0;
|
cannam@147
|
212 return result;
|
cannam@147
|
213 }
|
cannam@147
|
214
|
cannam@147
|
215 inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
|
cannam@147
|
216 inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
|
cannam@147
|
217
|
cannam@147
|
218 inline Array& operator=(decltype(nullptr)) {
|
cannam@147
|
219 dispose();
|
cannam@147
|
220 return *this;
|
cannam@147
|
221 }
|
cannam@147
|
222
|
cannam@147
|
223 inline Array& operator=(Array&& other) {
|
cannam@147
|
224 dispose();
|
cannam@147
|
225 ptr = other.ptr;
|
cannam@147
|
226 size_ = other.size_;
|
cannam@147
|
227 disposer = other.disposer;
|
cannam@147
|
228 other.ptr = nullptr;
|
cannam@147
|
229 other.size_ = 0;
|
cannam@147
|
230 return *this;
|
cannam@147
|
231 }
|
cannam@147
|
232
|
cannam@147
|
233 private:
|
cannam@147
|
234 T* ptr;
|
cannam@147
|
235 size_t size_;
|
cannam@147
|
236 const ArrayDisposer* disposer;
|
cannam@147
|
237
|
cannam@147
|
238 inline void dispose() {
|
cannam@147
|
239 // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
|
cannam@147
|
240 // dispose again.
|
cannam@147
|
241 T* ptrCopy = ptr;
|
cannam@147
|
242 size_t sizeCopy = size_;
|
cannam@147
|
243 if (ptrCopy != nullptr) {
|
cannam@147
|
244 ptr = nullptr;
|
cannam@147
|
245 size_ = 0;
|
cannam@147
|
246 disposer->dispose(ptrCopy, sizeCopy, sizeCopy);
|
cannam@147
|
247 }
|
cannam@147
|
248 }
|
cannam@147
|
249
|
cannam@147
|
250 template <typename U>
|
cannam@147
|
251 friend class Array;
|
cannam@147
|
252 };
|
cannam@147
|
253
|
cannam@147
|
254 static_assert(!canMemcpy<Array<char>>(), "canMemcpy<>() is broken");
|
cannam@147
|
255
|
cannam@147
|
256 namespace _ { // private
|
cannam@147
|
257
|
cannam@147
|
258 class HeapArrayDisposer final: public ArrayDisposer {
|
cannam@147
|
259 public:
|
cannam@147
|
260 template <typename T>
|
cannam@147
|
261 static T* allocate(size_t count);
|
cannam@147
|
262 template <typename T>
|
cannam@147
|
263 static T* allocateUninitialized(size_t count);
|
cannam@147
|
264
|
cannam@147
|
265 static const HeapArrayDisposer instance;
|
cannam@147
|
266
|
cannam@147
|
267 private:
|
cannam@147
|
268 static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity,
|
cannam@147
|
269 void (*constructElement)(void*), void (*destroyElement)(void*));
|
cannam@147
|
270 // Allocates and constructs the array. Both function pointers are null if the constructor is
|
cannam@147
|
271 // trivial, otherwise destroyElement is null if the constructor doesn't throw.
|
cannam@147
|
272
|
cannam@147
|
273 virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
|
cannam@147
|
274 size_t capacity, void (*destroyElement)(void*)) const override;
|
cannam@147
|
275
|
cannam@147
|
276 template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T),
|
cannam@147
|
277 bool hasNothrowConstructor = __has_nothrow_constructor(T)>
|
cannam@147
|
278 struct Allocate_;
|
cannam@147
|
279 };
|
cannam@147
|
280
|
cannam@147
|
281 } // namespace _ (private)
|
cannam@147
|
282
|
cannam@147
|
283 template <typename T>
|
cannam@147
|
284 inline Array<T> heapArray(size_t size) {
|
cannam@147
|
285 // Much like `heap<T>()` from memory.h, allocates a new array on the heap.
|
cannam@147
|
286
|
cannam@147
|
287 return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size,
|
cannam@147
|
288 _::HeapArrayDisposer::instance);
|
cannam@147
|
289 }
|
cannam@147
|
290
|
cannam@147
|
291 template <typename T> Array<T> heapArray(const T* content, size_t size);
|
cannam@147
|
292 template <typename T> Array<T> heapArray(ArrayPtr<T> content);
|
cannam@147
|
293 template <typename T> Array<T> heapArray(ArrayPtr<const T> content);
|
cannam@147
|
294 template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end);
|
cannam@147
|
295 template <typename T> Array<T> heapArray(std::initializer_list<T> init);
|
cannam@147
|
296 // Allocate a heap array containing a copy of the given content.
|
cannam@147
|
297
|
cannam@147
|
298 template <typename T, typename Container>
|
cannam@147
|
299 Array<T> heapArrayFromIterable(Container&& a) { return heapArray<T>(a.begin(), a.end()); }
|
cannam@147
|
300 template <typename T>
|
cannam@147
|
301 Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); }
|
cannam@147
|
302
|
cannam@147
|
303 // =======================================================================================
|
cannam@147
|
304 // ArrayBuilder
|
cannam@147
|
305
|
cannam@147
|
306 template <typename T>
|
cannam@147
|
307 class ArrayBuilder {
|
cannam@147
|
308 // Class which lets you build an Array<T> specifying the exact constructor arguments for each
|
cannam@147
|
309 // element, rather than starting by default-constructing them.
|
cannam@147
|
310
|
cannam@147
|
311 public:
|
cannam@147
|
312 ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
|
cannam@147
|
313 ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
|
cannam@147
|
314 explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity,
|
cannam@147
|
315 const ArrayDisposer& disposer)
|
cannam@147
|
316 : ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity),
|
cannam@147
|
317 disposer(&disposer) {}
|
cannam@147
|
318 ArrayBuilder(ArrayBuilder&& other)
|
cannam@147
|
319 : ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) {
|
cannam@147
|
320 other.ptr = nullptr;
|
cannam@147
|
321 other.pos = nullptr;
|
cannam@147
|
322 other.endPtr = nullptr;
|
cannam@147
|
323 }
|
cannam@147
|
324 KJ_DISALLOW_COPY(ArrayBuilder);
|
cannam@147
|
325 inline ~ArrayBuilder() noexcept(false) { dispose(); }
|
cannam@147
|
326
|
cannam@147
|
327 inline operator ArrayPtr<T>() {
|
cannam@147
|
328 return arrayPtr(ptr, pos);
|
cannam@147
|
329 }
|
cannam@147
|
330 inline operator ArrayPtr<const T>() const {
|
cannam@147
|
331 return arrayPtr(ptr, pos);
|
cannam@147
|
332 }
|
cannam@147
|
333 inline ArrayPtr<T> asPtr() {
|
cannam@147
|
334 return arrayPtr(ptr, pos);
|
cannam@147
|
335 }
|
cannam@147
|
336 inline ArrayPtr<const T> asPtr() const {
|
cannam@147
|
337 return arrayPtr(ptr, pos);
|
cannam@147
|
338 }
|
cannam@147
|
339
|
cannam@147
|
340 inline size_t size() const { return pos - ptr; }
|
cannam@147
|
341 inline size_t capacity() const { return endPtr - ptr; }
|
cannam@147
|
342 inline T& operator[](size_t index) const {
|
cannam@147
|
343 KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access.");
|
cannam@147
|
344 return ptr[index];
|
cannam@147
|
345 }
|
cannam@147
|
346
|
cannam@147
|
347 inline const T* begin() const { return ptr; }
|
cannam@147
|
348 inline const T* end() const { return pos; }
|
cannam@147
|
349 inline const T& front() const { return *ptr; }
|
cannam@147
|
350 inline const T& back() const { return *(pos - 1); }
|
cannam@147
|
351 inline T* begin() { return ptr; }
|
cannam@147
|
352 inline T* end() { return pos; }
|
cannam@147
|
353 inline T& front() { return *ptr; }
|
cannam@147
|
354 inline T& back() { return *(pos - 1); }
|
cannam@147
|
355
|
cannam@147
|
356 ArrayBuilder& operator=(ArrayBuilder&& other) {
|
cannam@147
|
357 dispose();
|
cannam@147
|
358 ptr = other.ptr;
|
cannam@147
|
359 pos = other.pos;
|
cannam@147
|
360 endPtr = other.endPtr;
|
cannam@147
|
361 disposer = other.disposer;
|
cannam@147
|
362 other.ptr = nullptr;
|
cannam@147
|
363 other.pos = nullptr;
|
cannam@147
|
364 other.endPtr = nullptr;
|
cannam@147
|
365 return *this;
|
cannam@147
|
366 }
|
cannam@147
|
367 ArrayBuilder& operator=(decltype(nullptr)) {
|
cannam@147
|
368 dispose();
|
cannam@147
|
369 return *this;
|
cannam@147
|
370 }
|
cannam@147
|
371
|
cannam@147
|
372 template <typename... Params>
|
cannam@147
|
373 T& add(Params&&... params) {
|
cannam@147
|
374 KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder.");
|
cannam@147
|
375 ctor(*pos, kj::fwd<Params>(params)...);
|
cannam@147
|
376 return *pos++;
|
cannam@147
|
377 }
|
cannam@147
|
378
|
cannam@147
|
379 template <typename Container>
|
cannam@147
|
380 void addAll(Container&& container) {
|
cannam@147
|
381 addAll<decltype(container.begin()), !isReference<Container>()>(
|
cannam@147
|
382 container.begin(), container.end());
|
cannam@147
|
383 }
|
cannam@147
|
384
|
cannam@147
|
385 template <typename Iterator, bool move = false>
|
cannam@147
|
386 void addAll(Iterator start, Iterator end);
|
cannam@147
|
387
|
cannam@147
|
388 void removeLast() {
|
cannam@147
|
389 KJ_IREQUIRE(pos > ptr, "No elements present to remove.");
|
cannam@147
|
390 kj::dtor(*--pos);
|
cannam@147
|
391 }
|
cannam@147
|
392
|
cannam@147
|
393 void truncate(size_t size) {
|
cannam@147
|
394 KJ_IREQUIRE(size <= this->size(), "can't use truncate() to expand");
|
cannam@147
|
395
|
cannam@147
|
396 T* target = ptr + size;
|
cannam@147
|
397 if (__has_trivial_destructor(T)) {
|
cannam@147
|
398 pos = target;
|
cannam@147
|
399 } else {
|
cannam@147
|
400 while (pos > target) {
|
cannam@147
|
401 kj::dtor(*--pos);
|
cannam@147
|
402 }
|
cannam@147
|
403 }
|
cannam@147
|
404 }
|
cannam@147
|
405
|
cannam@147
|
406 void resize(size_t size) {
|
cannam@147
|
407 KJ_IREQUIRE(size <= capacity(), "can't resize past capacity");
|
cannam@147
|
408
|
cannam@147
|
409 T* target = ptr + size;
|
cannam@147
|
410 if (target > pos) {
|
cannam@147
|
411 // expand
|
cannam@147
|
412 if (__has_trivial_constructor(T)) {
|
cannam@147
|
413 pos = target;
|
cannam@147
|
414 } else {
|
cannam@147
|
415 while (pos < target) {
|
cannam@147
|
416 kj::ctor(*pos++);
|
cannam@147
|
417 }
|
cannam@147
|
418 }
|
cannam@147
|
419 } else {
|
cannam@147
|
420 // truncate
|
cannam@147
|
421 if (__has_trivial_destructor(T)) {
|
cannam@147
|
422 pos = target;
|
cannam@147
|
423 } else {
|
cannam@147
|
424 while (pos > target) {
|
cannam@147
|
425 kj::dtor(*--pos);
|
cannam@147
|
426 }
|
cannam@147
|
427 }
|
cannam@147
|
428 }
|
cannam@147
|
429 }
|
cannam@147
|
430
|
cannam@147
|
431 Array<T> finish() {
|
cannam@147
|
432 // We could safely remove this check if we assume that the disposer implementation doesn't
|
cannam@147
|
433 // need to know the original capacity, as is thes case with HeapArrayDisposer since it uses
|
cannam@147
|
434 // operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity
|
cannam@147
|
435 // in a prefix. But that would make it hard to write cleverer heap allocators, and anyway this
|
cannam@147
|
436 // check might catch bugs. Probably people should use Vector if they want to build arrays
|
cannam@147
|
437 // without knowing the final size in advance.
|
cannam@147
|
438 KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely.");
|
cannam@147
|
439 Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, *disposer);
|
cannam@147
|
440 ptr = nullptr;
|
cannam@147
|
441 pos = nullptr;
|
cannam@147
|
442 endPtr = nullptr;
|
cannam@147
|
443 return result;
|
cannam@147
|
444 }
|
cannam@147
|
445
|
cannam@147
|
446 inline bool isFull() const {
|
cannam@147
|
447 return pos == endPtr;
|
cannam@147
|
448 }
|
cannam@147
|
449
|
cannam@147
|
450 private:
|
cannam@147
|
451 T* ptr;
|
cannam@147
|
452 RemoveConst<T>* pos;
|
cannam@147
|
453 T* endPtr;
|
cannam@147
|
454 const ArrayDisposer* disposer;
|
cannam@147
|
455
|
cannam@147
|
456 inline void dispose() {
|
cannam@147
|
457 // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
|
cannam@147
|
458 // dispose again.
|
cannam@147
|
459 T* ptrCopy = ptr;
|
cannam@147
|
460 T* posCopy = pos;
|
cannam@147
|
461 T* endCopy = endPtr;
|
cannam@147
|
462 if (ptrCopy != nullptr) {
|
cannam@147
|
463 ptr = nullptr;
|
cannam@147
|
464 pos = nullptr;
|
cannam@147
|
465 endPtr = nullptr;
|
cannam@147
|
466 disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy);
|
cannam@147
|
467 }
|
cannam@147
|
468 }
|
cannam@147
|
469 };
|
cannam@147
|
470
|
cannam@147
|
471 template <typename T>
|
cannam@147
|
472 inline ArrayBuilder<T> heapArrayBuilder(size_t size) {
|
cannam@147
|
473 // Like `heapArray<T>()` but does not default-construct the elements. You must construct them
|
cannam@147
|
474 // manually by calling `add()`.
|
cannam@147
|
475
|
cannam@147
|
476 return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size),
|
cannam@147
|
477 size, _::HeapArrayDisposer::instance);
|
cannam@147
|
478 }
|
cannam@147
|
479
|
cannam@147
|
480 // =======================================================================================
|
cannam@147
|
481 // Inline Arrays
|
cannam@147
|
482
|
cannam@147
|
483 template <typename T, size_t fixedSize>
|
cannam@147
|
484 class FixedArray {
|
cannam@147
|
485 // A fixed-width array whose storage is allocated inline rather than on the heap.
|
cannam@147
|
486
|
cannam@147
|
487 public:
|
cannam@147
|
488 inline size_t size() const { return fixedSize; }
|
cannam@147
|
489 inline T* begin() { return content; }
|
cannam@147
|
490 inline T* end() { return content + fixedSize; }
|
cannam@147
|
491 inline const T* begin() const { return content; }
|
cannam@147
|
492 inline const T* end() const { return content + fixedSize; }
|
cannam@147
|
493
|
cannam@147
|
494 inline operator ArrayPtr<T>() {
|
cannam@147
|
495 return arrayPtr(content, fixedSize);
|
cannam@147
|
496 }
|
cannam@147
|
497 inline operator ArrayPtr<const T>() const {
|
cannam@147
|
498 return arrayPtr(content, fixedSize);
|
cannam@147
|
499 }
|
cannam@147
|
500
|
cannam@147
|
501 inline T& operator[](size_t index) { return content[index]; }
|
cannam@147
|
502 inline const T& operator[](size_t index) const { return content[index]; }
|
cannam@147
|
503
|
cannam@147
|
504 private:
|
cannam@147
|
505 T content[fixedSize];
|
cannam@147
|
506 };
|
cannam@147
|
507
|
cannam@147
|
508 template <typename T, size_t fixedSize>
|
cannam@147
|
509 class CappedArray {
|
cannam@147
|
510 // Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit
|
cannam@147
|
511 // specified by the template parameter.
|
cannam@147
|
512 //
|
cannam@147
|
513 // TODO(someday): Don't construct elements past currentSize?
|
cannam@147
|
514
|
cannam@147
|
515 public:
|
cannam@147
|
516 inline KJ_CONSTEXPR() CappedArray(): currentSize(fixedSize) {}
|
cannam@147
|
517 inline explicit constexpr CappedArray(size_t s): currentSize(s) {}
|
cannam@147
|
518
|
cannam@147
|
519 inline size_t size() const { return currentSize; }
|
cannam@147
|
520 inline void setSize(size_t s) { KJ_IREQUIRE(s <= fixedSize); currentSize = s; }
|
cannam@147
|
521 inline T* begin() { return content; }
|
cannam@147
|
522 inline T* end() { return content + currentSize; }
|
cannam@147
|
523 inline const T* begin() const { return content; }
|
cannam@147
|
524 inline const T* end() const { return content + currentSize; }
|
cannam@147
|
525
|
cannam@147
|
526 inline operator ArrayPtr<T>() {
|
cannam@147
|
527 return arrayPtr(content, currentSize);
|
cannam@147
|
528 }
|
cannam@147
|
529 inline operator ArrayPtr<const T>() const {
|
cannam@147
|
530 return arrayPtr(content, currentSize);
|
cannam@147
|
531 }
|
cannam@147
|
532
|
cannam@147
|
533 inline T& operator[](size_t index) { return content[index]; }
|
cannam@147
|
534 inline const T& operator[](size_t index) const { return content[index]; }
|
cannam@147
|
535
|
cannam@147
|
536 private:
|
cannam@147
|
537 size_t currentSize;
|
cannam@147
|
538 T content[fixedSize];
|
cannam@147
|
539 };
|
cannam@147
|
540
|
cannam@147
|
541 // =======================================================================================
|
cannam@147
|
542 // KJ_MAP
|
cannam@147
|
543
|
cannam@147
|
544 #define KJ_MAP(elementName, array) \
|
cannam@147
|
545 ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>(array) * \
|
cannam@147
|
546 [&](typename ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>::Element elementName)
|
cannam@147
|
547 // Applies some function to every element of an array, returning an Array of the results, with
|
cannam@147
|
548 // nice syntax. Example:
|
cannam@147
|
549 //
|
cannam@147
|
550 // StringPtr foo = "abcd";
|
cannam@147
|
551 // Array<char> bar = KJ_MAP(c, foo) -> char { return c + 1; };
|
cannam@147
|
552 // KJ_ASSERT(str(bar) == "bcde");
|
cannam@147
|
553
|
cannam@147
|
554 namespace _ { // private
|
cannam@147
|
555
|
cannam@147
|
556 template <typename T>
|
cannam@147
|
557 struct Mapper {
|
cannam@147
|
558 T array;
|
cannam@147
|
559 Mapper(T&& array): array(kj::fwd<T>(array)) {}
|
cannam@147
|
560 template <typename Func>
|
cannam@147
|
561 auto operator*(Func&& func) -> Array<decltype(func(*array.begin()))> {
|
cannam@147
|
562 auto builder = heapArrayBuilder<decltype(func(*array.begin()))>(array.size());
|
cannam@147
|
563 for (auto iter = array.begin(); iter != array.end(); ++iter) {
|
cannam@147
|
564 builder.add(func(*iter));
|
cannam@147
|
565 }
|
cannam@147
|
566 return builder.finish();
|
cannam@147
|
567 }
|
cannam@147
|
568 typedef decltype(*kj::instance<T>().begin()) Element;
|
cannam@147
|
569 };
|
cannam@147
|
570
|
cannam@147
|
571 template <typename T, size_t s>
|
cannam@147
|
572 struct Mapper<T(&)[s]> {
|
cannam@147
|
573 T* array;
|
cannam@147
|
574 Mapper(T* array): array(array) {}
|
cannam@147
|
575 template <typename Func>
|
cannam@147
|
576 auto operator*(Func&& func) -> Array<decltype(func(*array))> {
|
cannam@147
|
577 auto builder = heapArrayBuilder<decltype(func(*array))>(s);
|
cannam@147
|
578 for (size_t i = 0; i < s; i++) {
|
cannam@147
|
579 builder.add(func(array[i]));
|
cannam@147
|
580 }
|
cannam@147
|
581 return builder.finish();
|
cannam@147
|
582 }
|
cannam@147
|
583 typedef decltype(*array)& Element;
|
cannam@147
|
584 };
|
cannam@147
|
585
|
cannam@147
|
586 } // namespace _ (private)
|
cannam@147
|
587
|
cannam@147
|
588 // =======================================================================================
|
cannam@147
|
589 // Inline implementation details
|
cannam@147
|
590
|
cannam@147
|
591 template <typename T>
|
cannam@147
|
592 struct ArrayDisposer::Dispose_<T, true> {
|
cannam@147
|
593 static void dispose(T* firstElement, size_t elementCount, size_t capacity,
|
cannam@147
|
594 const ArrayDisposer& disposer) {
|
cannam@147
|
595 disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement),
|
cannam@147
|
596 sizeof(T), elementCount, capacity, nullptr);
|
cannam@147
|
597 }
|
cannam@147
|
598 };
|
cannam@147
|
599 template <typename T>
|
cannam@147
|
600 struct ArrayDisposer::Dispose_<T, false> {
|
cannam@147
|
601 static void destruct(void* ptr) {
|
cannam@147
|
602 kj::dtor(*reinterpret_cast<T*>(ptr));
|
cannam@147
|
603 }
|
cannam@147
|
604
|
cannam@147
|
605 static void dispose(T* firstElement, size_t elementCount, size_t capacity,
|
cannam@147
|
606 const ArrayDisposer& disposer) {
|
cannam@147
|
607 disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct);
|
cannam@147
|
608 }
|
cannam@147
|
609 };
|
cannam@147
|
610
|
cannam@147
|
611 template <typename T>
|
cannam@147
|
612 void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const {
|
cannam@147
|
613 Dispose_<T>::dispose(firstElement, elementCount, capacity, *this);
|
cannam@147
|
614 }
|
cannam@147
|
615
|
cannam@147
|
616 namespace _ { // private
|
cannam@147
|
617
|
cannam@147
|
618 template <typename T>
|
cannam@147
|
619 struct HeapArrayDisposer::Allocate_<T, true, true> {
|
cannam@147
|
620 static T* allocate(size_t elementCount, size_t capacity) {
|
cannam@147
|
621 return reinterpret_cast<T*>(allocateImpl(
|
cannam@147
|
622 sizeof(T), elementCount, capacity, nullptr, nullptr));
|
cannam@147
|
623 }
|
cannam@147
|
624 };
|
cannam@147
|
625 template <typename T>
|
cannam@147
|
626 struct HeapArrayDisposer::Allocate_<T, false, true> {
|
cannam@147
|
627 static void construct(void* ptr) {
|
cannam@147
|
628 kj::ctor(*reinterpret_cast<T*>(ptr));
|
cannam@147
|
629 }
|
cannam@147
|
630 static T* allocate(size_t elementCount, size_t capacity) {
|
cannam@147
|
631 return reinterpret_cast<T*>(allocateImpl(
|
cannam@147
|
632 sizeof(T), elementCount, capacity, &construct, nullptr));
|
cannam@147
|
633 }
|
cannam@147
|
634 };
|
cannam@147
|
635 template <typename T>
|
cannam@147
|
636 struct HeapArrayDisposer::Allocate_<T, false, false> {
|
cannam@147
|
637 static void construct(void* ptr) {
|
cannam@147
|
638 kj::ctor(*reinterpret_cast<T*>(ptr));
|
cannam@147
|
639 }
|
cannam@147
|
640 static void destruct(void* ptr) {
|
cannam@147
|
641 kj::dtor(*reinterpret_cast<T*>(ptr));
|
cannam@147
|
642 }
|
cannam@147
|
643 static T* allocate(size_t elementCount, size_t capacity) {
|
cannam@147
|
644 return reinterpret_cast<T*>(allocateImpl(
|
cannam@147
|
645 sizeof(T), elementCount, capacity, &construct, &destruct));
|
cannam@147
|
646 }
|
cannam@147
|
647 };
|
cannam@147
|
648
|
cannam@147
|
649 template <typename T>
|
cannam@147
|
650 T* HeapArrayDisposer::allocate(size_t count) {
|
cannam@147
|
651 return Allocate_<T>::allocate(count, count);
|
cannam@147
|
652 }
|
cannam@147
|
653
|
cannam@147
|
654 template <typename T>
|
cannam@147
|
655 T* HeapArrayDisposer::allocateUninitialized(size_t count) {
|
cannam@147
|
656 return Allocate_<T, true, true>::allocate(0, count);
|
cannam@147
|
657 }
|
cannam@147
|
658
|
cannam@147
|
659 template <typename Element, typename Iterator, bool move, bool = canMemcpy<Element>()>
|
cannam@147
|
660 struct CopyConstructArray_;
|
cannam@147
|
661
|
cannam@147
|
662 template <typename T, bool move>
|
cannam@147
|
663 struct CopyConstructArray_<T, T*, move, true> {
|
cannam@147
|
664 static inline T* apply(T* __restrict__ pos, T* start, T* end) {
|
cannam@147
|
665 memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start));
|
cannam@147
|
666 return pos + (end - start);
|
cannam@147
|
667 }
|
cannam@147
|
668 };
|
cannam@147
|
669
|
cannam@147
|
670 template <typename T>
|
cannam@147
|
671 struct CopyConstructArray_<T, const T*, false, true> {
|
cannam@147
|
672 static inline T* apply(T* __restrict__ pos, const T* start, const T* end) {
|
cannam@147
|
673 memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start));
|
cannam@147
|
674 return pos + (end - start);
|
cannam@147
|
675 }
|
cannam@147
|
676 };
|
cannam@147
|
677
|
cannam@147
|
678 template <typename T, typename Iterator, bool move>
|
cannam@147
|
679 struct CopyConstructArray_<T, Iterator, move, true> {
|
cannam@147
|
680 static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
|
cannam@147
|
681 // Since both the copy constructor and assignment operator are trivial, we know that assignment
|
cannam@147
|
682 // is equivalent to copy-constructing. So we can make this case somewhat easier for the
|
cannam@147
|
683 // compiler to optimize.
|
cannam@147
|
684 while (start != end) {
|
cannam@147
|
685 *pos++ = *start++;
|
cannam@147
|
686 }
|
cannam@147
|
687 return pos;
|
cannam@147
|
688 }
|
cannam@147
|
689 };
|
cannam@147
|
690
|
cannam@147
|
691 template <typename T, typename Iterator>
|
cannam@147
|
692 struct CopyConstructArray_<T, Iterator, false, false> {
|
cannam@147
|
693 struct ExceptionGuard {
|
cannam@147
|
694 T* start;
|
cannam@147
|
695 T* pos;
|
cannam@147
|
696 inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
|
cannam@147
|
697 ~ExceptionGuard() noexcept(false) {
|
cannam@147
|
698 while (pos > start) {
|
cannam@147
|
699 dtor(*--pos);
|
cannam@147
|
700 }
|
cannam@147
|
701 }
|
cannam@147
|
702 };
|
cannam@147
|
703
|
cannam@147
|
704 static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
|
cannam@147
|
705 // Verify that T can be *implicitly* constructed from the source values.
|
cannam@147
|
706 if (false) implicitCast<T>(*start);
|
cannam@147
|
707
|
cannam@147
|
708 if (noexcept(T(*start))) {
|
cannam@147
|
709 while (start != end) {
|
cannam@147
|
710 ctor(*pos++, *start++);
|
cannam@147
|
711 }
|
cannam@147
|
712 return pos;
|
cannam@147
|
713 } else {
|
cannam@147
|
714 // Crap. This is complicated.
|
cannam@147
|
715 ExceptionGuard guard(pos);
|
cannam@147
|
716 while (start != end) {
|
cannam@147
|
717 ctor(*guard.pos, *start++);
|
cannam@147
|
718 ++guard.pos;
|
cannam@147
|
719 }
|
cannam@147
|
720 guard.start = guard.pos;
|
cannam@147
|
721 return guard.pos;
|
cannam@147
|
722 }
|
cannam@147
|
723 }
|
cannam@147
|
724 };
|
cannam@147
|
725
|
cannam@147
|
726 template <typename T, typename Iterator>
|
cannam@147
|
727 struct CopyConstructArray_<T, Iterator, true, false> {
|
cannam@147
|
728 // Actually move-construct.
|
cannam@147
|
729
|
cannam@147
|
730 struct ExceptionGuard {
|
cannam@147
|
731 T* start;
|
cannam@147
|
732 T* pos;
|
cannam@147
|
733 inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
|
cannam@147
|
734 ~ExceptionGuard() noexcept(false) {
|
cannam@147
|
735 while (pos > start) {
|
cannam@147
|
736 dtor(*--pos);
|
cannam@147
|
737 }
|
cannam@147
|
738 }
|
cannam@147
|
739 };
|
cannam@147
|
740
|
cannam@147
|
741 static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
|
cannam@147
|
742 // Verify that T can be *implicitly* constructed from the source values.
|
cannam@147
|
743 if (false) implicitCast<T>(kj::mv(*start));
|
cannam@147
|
744
|
cannam@147
|
745 if (noexcept(T(kj::mv(*start)))) {
|
cannam@147
|
746 while (start != end) {
|
cannam@147
|
747 ctor(*pos++, kj::mv(*start++));
|
cannam@147
|
748 }
|
cannam@147
|
749 return pos;
|
cannam@147
|
750 } else {
|
cannam@147
|
751 // Crap. This is complicated.
|
cannam@147
|
752 ExceptionGuard guard(pos);
|
cannam@147
|
753 while (start != end) {
|
cannam@147
|
754 ctor(*guard.pos, kj::mv(*start++));
|
cannam@147
|
755 ++guard.pos;
|
cannam@147
|
756 }
|
cannam@147
|
757 guard.start = guard.pos;
|
cannam@147
|
758 return guard.pos;
|
cannam@147
|
759 }
|
cannam@147
|
760 }
|
cannam@147
|
761 };
|
cannam@147
|
762
|
cannam@147
|
763 } // namespace _ (private)
|
cannam@147
|
764
|
cannam@147
|
765 template <typename T>
|
cannam@147
|
766 template <typename Iterator, bool move>
|
cannam@147
|
767 void ArrayBuilder<T>::addAll(Iterator start, Iterator end) {
|
cannam@147
|
768 pos = _::CopyConstructArray_<RemoveConst<T>, Decay<Iterator>, move>::apply(pos, start, end);
|
cannam@147
|
769 }
|
cannam@147
|
770
|
cannam@147
|
771 template <typename T>
|
cannam@147
|
772 Array<T> heapArray(const T* content, size_t size) {
|
cannam@147
|
773 ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
|
cannam@147
|
774 builder.addAll(content, content + size);
|
cannam@147
|
775 return builder.finish();
|
cannam@147
|
776 }
|
cannam@147
|
777
|
cannam@147
|
778 template <typename T>
|
cannam@147
|
779 Array<T> heapArray(T* content, size_t size) {
|
cannam@147
|
780 ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
|
cannam@147
|
781 builder.addAll(content, content + size);
|
cannam@147
|
782 return builder.finish();
|
cannam@147
|
783 }
|
cannam@147
|
784
|
cannam@147
|
785 template <typename T>
|
cannam@147
|
786 Array<T> heapArray(ArrayPtr<T> content) {
|
cannam@147
|
787 ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
|
cannam@147
|
788 builder.addAll(content);
|
cannam@147
|
789 return builder.finish();
|
cannam@147
|
790 }
|
cannam@147
|
791
|
cannam@147
|
792 template <typename T>
|
cannam@147
|
793 Array<T> heapArray(ArrayPtr<const T> content) {
|
cannam@147
|
794 ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
|
cannam@147
|
795 builder.addAll(content);
|
cannam@147
|
796 return builder.finish();
|
cannam@147
|
797 }
|
cannam@147
|
798
|
cannam@147
|
799 template <typename T, typename Iterator> Array<T>
|
cannam@147
|
800 heapArray(Iterator begin, Iterator end) {
|
cannam@147
|
801 ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin);
|
cannam@147
|
802 builder.addAll(begin, end);
|
cannam@147
|
803 return builder.finish();
|
cannam@147
|
804 }
|
cannam@147
|
805
|
cannam@147
|
806 template <typename T>
|
cannam@147
|
807 inline Array<T> heapArray(std::initializer_list<T> init) {
|
cannam@147
|
808 return heapArray<T>(init.begin(), init.end());
|
cannam@147
|
809 }
|
cannam@147
|
810
|
cannam@147
|
811 } // namespace kj
|
cannam@147
|
812
|
cannam@147
|
813 #endif // KJ_ARRAY_H_
|