annotate osx/include/capnp/common.h @ 169:223a55898ab9 tip default

Add null config files
author Chris Cannam <cannam@all-day-breakfast.com>
date Mon, 02 Mar 2020 14:03:47 +0000
parents 45360b968bf4
children
rev   line source
cannam@147 1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
cannam@147 2 // Licensed under the MIT License:
cannam@147 3 //
cannam@147 4 // Permission is hereby granted, free of charge, to any person obtaining a copy
cannam@147 5 // of this software and associated documentation files (the "Software"), to deal
cannam@147 6 // in the Software without restriction, including without limitation the rights
cannam@147 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
cannam@147 8 // copies of the Software, and to permit persons to whom the Software is
cannam@147 9 // furnished to do so, subject to the following conditions:
cannam@147 10 //
cannam@147 11 // The above copyright notice and this permission notice shall be included in
cannam@147 12 // all copies or substantial portions of the Software.
cannam@147 13 //
cannam@147 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
cannam@147 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
cannam@147 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
cannam@147 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
cannam@147 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
cannam@147 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
cannam@147 20 // THE SOFTWARE.
cannam@147 21
cannam@147 22 // This file contains types which are intended to help detect incorrect usage at compile
cannam@147 23 // time, but should then be optimized down to basic primitives (usually, integers) by the
cannam@147 24 // compiler.
cannam@147 25
cannam@147 26 #ifndef CAPNP_COMMON_H_
cannam@147 27 #define CAPNP_COMMON_H_
cannam@147 28
cannam@147 29 #if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
cannam@147 30 #pragma GCC system_header
cannam@147 31 #endif
cannam@147 32
cannam@147 33 #include <inttypes.h>
cannam@147 34 #include <kj/string.h>
cannam@147 35 #include <kj/memory.h>
cannam@147 36
cannam@147 37 #if CAPNP_DEBUG_TYPES
cannam@147 38 #include <kj/units.h>
cannam@147 39 #endif
cannam@147 40
cannam@147 41 namespace capnp {
cannam@147 42
cannam@147 43 #define CAPNP_VERSION_MAJOR 0
cannam@147 44 #define CAPNP_VERSION_MINOR 6
cannam@147 45 #define CAPNP_VERSION_MICRO 0
cannam@147 46
cannam@147 47 #define CAPNP_VERSION \
cannam@147 48 (CAPNP_VERSION_MAJOR * 1000000 + CAPNP_VERSION_MINOR * 1000 + CAPNP_VERSION_MICRO)
cannam@147 49
cannam@147 50 #ifndef CAPNP_LITE
cannam@147 51 #define CAPNP_LITE 0
cannam@147 52 #endif
cannam@147 53
cannam@147 54 typedef unsigned int uint;
cannam@147 55
cannam@147 56 struct Void {
cannam@147 57 // Type used for Void fields. Using C++'s "void" type creates a bunch of issues since it behaves
cannam@147 58 // differently from other types.
cannam@147 59
cannam@147 60 inline constexpr bool operator==(Void other) const { return true; }
cannam@147 61 inline constexpr bool operator!=(Void other) const { return false; }
cannam@147 62 };
cannam@147 63
cannam@147 64 static constexpr Void VOID = Void();
cannam@147 65 // Constant value for `Void`, which is an empty struct.
cannam@147 66
cannam@147 67 inline kj::StringPtr KJ_STRINGIFY(Void) { return "void"; }
cannam@147 68
cannam@147 69 struct Text;
cannam@147 70 struct Data;
cannam@147 71
cannam@147 72 enum class Kind: uint8_t {
cannam@147 73 PRIMITIVE,
cannam@147 74 BLOB,
cannam@147 75 ENUM,
cannam@147 76 STRUCT,
cannam@147 77 UNION,
cannam@147 78 INTERFACE,
cannam@147 79 LIST,
cannam@147 80
cannam@147 81 OTHER
cannam@147 82 // Some other type which is often a type parameter to Cap'n Proto templates, but which needs
cannam@147 83 // special handling. This includes types like AnyPointer, Dynamic*, etc.
cannam@147 84 };
cannam@147 85
cannam@147 86 enum class Style: uint8_t {
cannam@147 87 PRIMITIVE,
cannam@147 88 POINTER, // other than struct
cannam@147 89 STRUCT,
cannam@147 90 CAPABILITY
cannam@147 91 };
cannam@147 92
cannam@147 93 enum class ElementSize: uint8_t {
cannam@147 94 // Size of a list element.
cannam@147 95
cannam@147 96 VOID = 0,
cannam@147 97 BIT = 1,
cannam@147 98 BYTE = 2,
cannam@147 99 TWO_BYTES = 3,
cannam@147 100 FOUR_BYTES = 4,
cannam@147 101 EIGHT_BYTES = 5,
cannam@147 102
cannam@147 103 POINTER = 6,
cannam@147 104
cannam@147 105 INLINE_COMPOSITE = 7
cannam@147 106 };
cannam@147 107
cannam@147 108 enum class PointerType {
cannam@147 109 // Various wire types a pointer field can take
cannam@147 110
cannam@147 111 NULL_,
cannam@147 112 // Should be NULL, but that's #defined in stddef.h
cannam@147 113
cannam@147 114 STRUCT,
cannam@147 115 LIST,
cannam@147 116 CAPABILITY
cannam@147 117 };
cannam@147 118
cannam@147 119 namespace schemas {
cannam@147 120
cannam@147 121 template <typename T>
cannam@147 122 struct EnumInfo;
cannam@147 123
cannam@147 124 } // namespace schemas
cannam@147 125
cannam@147 126 namespace _ { // private
cannam@147 127
cannam@147 128 template <typename T, typename = void> struct Kind_;
cannam@147 129
cannam@147 130 template <> struct Kind_<Void> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 131 template <> struct Kind_<bool> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 132 template <> struct Kind_<int8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 133 template <> struct Kind_<int16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 134 template <> struct Kind_<int32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 135 template <> struct Kind_<int64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 136 template <> struct Kind_<uint8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 137 template <> struct Kind_<uint16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 138 template <> struct Kind_<uint32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 139 template <> struct Kind_<uint64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 140 template <> struct Kind_<float> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 141 template <> struct Kind_<double> { static constexpr Kind kind = Kind::PRIMITIVE; };
cannam@147 142 template <> struct Kind_<Text> { static constexpr Kind kind = Kind::BLOB; };
cannam@147 143 template <> struct Kind_<Data> { static constexpr Kind kind = Kind::BLOB; };
cannam@147 144
cannam@147 145 template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsStruct>> {
cannam@147 146 static constexpr Kind kind = Kind::STRUCT;
cannam@147 147 };
cannam@147 148 template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsInterface>> {
cannam@147 149 static constexpr Kind kind = Kind::INTERFACE;
cannam@147 150 };
cannam@147 151 template <typename T> struct Kind_<T, kj::VoidSfinae<typename schemas::EnumInfo<T>::IsEnum>> {
cannam@147 152 static constexpr Kind kind = Kind::ENUM;
cannam@147 153 };
cannam@147 154
cannam@147 155 } // namespace _ (private)
cannam@147 156
cannam@147 157 template <typename T, Kind k = _::Kind_<T>::kind>
cannam@147 158 inline constexpr Kind kind() {
cannam@147 159 // This overload of kind() matches types which have a Kind_ specialization.
cannam@147 160
cannam@147 161 return k;
cannam@147 162 }
cannam@147 163
cannam@147 164 #if CAPNP_LITE
cannam@147 165
cannam@147 166 #define CAPNP_KIND(T) ::capnp::_::Kind_<T>::kind
cannam@147 167 // Avoid constexpr methods in lite mode (MSVC is bad at constexpr).
cannam@147 168
cannam@147 169 #else // CAPNP_LITE
cannam@147 170
cannam@147 171 #define CAPNP_KIND(T) ::capnp::kind<T>()
cannam@147 172 // Use this macro rather than kind<T>() in any code which must work in lite mode.
cannam@147 173
cannam@147 174 template <typename T, Kind k = kind<T>()>
cannam@147 175 inline constexpr Style style() {
cannam@147 176 return k == Kind::PRIMITIVE || k == Kind::ENUM ? Style::PRIMITIVE
cannam@147 177 : k == Kind::STRUCT ? Style::STRUCT
cannam@147 178 : k == Kind::INTERFACE ? Style::CAPABILITY : Style::POINTER;
cannam@147 179 }
cannam@147 180
cannam@147 181 #endif // CAPNP_LITE, else
cannam@147 182
cannam@147 183 template <typename T, Kind k = CAPNP_KIND(T)>
cannam@147 184 struct List;
cannam@147 185
cannam@147 186 #if _MSC_VER
cannam@147 187
cannam@147 188 template <typename T, Kind k>
cannam@147 189 struct List {};
cannam@147 190 // For some reason, without this declaration, MSVC will error out on some uses of List
cannam@147 191 // claiming that "T" -- as used in the default initializer for the second template param, "k" --
cannam@147 192 // is not defined. I do not understand this error, but adding this empty default declaration fixes
cannam@147 193 // it.
cannam@147 194
cannam@147 195 #endif
cannam@147 196
cannam@147 197 template <typename T> struct ListElementType_;
cannam@147 198 template <typename T> struct ListElementType_<List<T>> { typedef T Type; };
cannam@147 199 template <typename T> using ListElementType = typename ListElementType_<T>::Type;
cannam@147 200
cannam@147 201 namespace _ { // private
cannam@147 202 template <typename T, Kind k> struct Kind_<List<T, k>> {
cannam@147 203 static constexpr Kind kind = Kind::LIST;
cannam@147 204 };
cannam@147 205 } // namespace _ (private)
cannam@147 206
cannam@147 207 template <typename T, Kind k = CAPNP_KIND(T)> struct ReaderFor_ { typedef typename T::Reader Type; };
cannam@147 208 template <typename T> struct ReaderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
cannam@147 209 template <typename T> struct ReaderFor_<T, Kind::ENUM> { typedef T Type; };
cannam@147 210 template <typename T> struct ReaderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
cannam@147 211 template <typename T> using ReaderFor = typename ReaderFor_<T>::Type;
cannam@147 212 // The type returned by List<T>::Reader::operator[].
cannam@147 213
cannam@147 214 template <typename T, Kind k = CAPNP_KIND(T)> struct BuilderFor_ { typedef typename T::Builder Type; };
cannam@147 215 template <typename T> struct BuilderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
cannam@147 216 template <typename T> struct BuilderFor_<T, Kind::ENUM> { typedef T Type; };
cannam@147 217 template <typename T> struct BuilderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
cannam@147 218 template <typename T> using BuilderFor = typename BuilderFor_<T>::Type;
cannam@147 219 // The type returned by List<T>::Builder::operator[].
cannam@147 220
cannam@147 221 template <typename T, Kind k = CAPNP_KIND(T)> struct PipelineFor_ { typedef typename T::Pipeline Type;};
cannam@147 222 template <typename T> struct PipelineFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
cannam@147 223 template <typename T> using PipelineFor = typename PipelineFor_<T>::Type;
cannam@147 224
cannam@147 225 template <typename T, Kind k = CAPNP_KIND(T)> struct TypeIfEnum_;
cannam@147 226 template <typename T> struct TypeIfEnum_<T, Kind::ENUM> { typedef T Type; };
cannam@147 227
cannam@147 228 template <typename T>
cannam@147 229 using TypeIfEnum = typename TypeIfEnum_<kj::Decay<T>>::Type;
cannam@147 230
cannam@147 231 template <typename T>
cannam@147 232 using FromReader = typename kj::Decay<T>::Reads;
cannam@147 233 // FromReader<MyType::Reader> = MyType (for any Cap'n Proto type).
cannam@147 234
cannam@147 235 template <typename T>
cannam@147 236 using FromBuilder = typename kj::Decay<T>::Builds;
cannam@147 237 // FromBuilder<MyType::Builder> = MyType (for any Cap'n Proto type).
cannam@147 238
cannam@147 239 template <typename T>
cannam@147 240 using FromPipeline = typename kj::Decay<T>::Pipelines;
cannam@147 241 // FromBuilder<MyType::Pipeline> = MyType (for any Cap'n Proto type).
cannam@147 242
cannam@147 243 template <typename T>
cannam@147 244 using FromClient = typename kj::Decay<T>::Calls;
cannam@147 245 // FromReader<MyType::Client> = MyType (for any Cap'n Proto interface type).
cannam@147 246
cannam@147 247 template <typename T>
cannam@147 248 using FromServer = typename kj::Decay<T>::Serves;
cannam@147 249 // FromBuilder<MyType::Server> = MyType (for any Cap'n Proto interface type).
cannam@147 250
cannam@147 251 template <typename T, typename = void>
cannam@147 252 struct FromAny_;
cannam@147 253
cannam@147 254 template <typename T>
cannam@147 255 struct FromAny_<T, kj::VoidSfinae<FromReader<T>>> {
cannam@147 256 using Type = FromReader<T>;
cannam@147 257 };
cannam@147 258
cannam@147 259 template <typename T>
cannam@147 260 struct FromAny_<T, kj::VoidSfinae<FromBuilder<T>>> {
cannam@147 261 using Type = FromBuilder<T>;
cannam@147 262 };
cannam@147 263
cannam@147 264 template <typename T>
cannam@147 265 struct FromAny_<T, kj::VoidSfinae<FromPipeline<T>>> {
cannam@147 266 using Type = FromPipeline<T>;
cannam@147 267 };
cannam@147 268
cannam@147 269 // Note that T::Client is covered by FromReader
cannam@147 270
cannam@147 271 template <typename T>
cannam@147 272 struct FromAny_<kj::Own<T>, kj::VoidSfinae<FromServer<T>>> {
cannam@147 273 using Type = FromServer<T>;
cannam@147 274 };
cannam@147 275
cannam@147 276 template <typename T>
cannam@147 277 struct FromAny_<T,
cannam@147 278 kj::EnableIf<_::Kind_<T>::kind == Kind::PRIMITIVE || _::Kind_<T>::kind == Kind::ENUM>> {
cannam@147 279 // TODO(msvc): Ideally the EnableIf condition would be `style<T>() == Style::PRIMITIVE`, but MSVC
cannam@147 280 // cannot yet use style<T>() in this constexpr context.
cannam@147 281
cannam@147 282 using Type = kj::Decay<T>;
cannam@147 283 };
cannam@147 284
cannam@147 285 template <typename T>
cannam@147 286 using FromAny = typename FromAny_<T>::Type;
cannam@147 287 // Given any Cap'n Proto value type as an input, return the Cap'n Proto base type. That is:
cannam@147 288 //
cannam@147 289 // Foo::Reader -> Foo
cannam@147 290 // Foo::Builder -> Foo
cannam@147 291 // Foo::Pipeline -> Foo
cannam@147 292 // Foo::Client -> Foo
cannam@147 293 // Own<Foo::Server> -> Foo
cannam@147 294 // uint32_t -> uint32_t
cannam@147 295
cannam@147 296 namespace _ { // private
cannam@147 297
cannam@147 298 template <typename T, Kind k = CAPNP_KIND(T)>
cannam@147 299 struct PointerHelpers;
cannam@147 300
cannam@147 301 #if _MSC_VER
cannam@147 302
cannam@147 303 template <typename T, Kind k>
cannam@147 304 struct PointerHelpers {};
cannam@147 305 // For some reason, without this declaration, MSVC will error out on some uses of PointerHelpers
cannam@147 306 // claiming that "T" -- as used in the default initializer for the second template param, "k" --
cannam@147 307 // is not defined. I do not understand this error, but adding this empty default declaration fixes
cannam@147 308 // it.
cannam@147 309
cannam@147 310 #endif
cannam@147 311
cannam@147 312 } // namespace _ (private)
cannam@147 313
cannam@147 314 struct MessageSize {
cannam@147 315 // Size of a message. Every struct type has a method `.totalSize()` that returns this.
cannam@147 316 uint64_t wordCount;
cannam@147 317 uint capCount;
cannam@147 318 };
cannam@147 319
cannam@147 320 // =======================================================================================
cannam@147 321 // Raw memory types and measures
cannam@147 322
cannam@147 323 using kj::byte;
cannam@147 324
cannam@147 325 class word { uint64_t content KJ_UNUSED_MEMBER; KJ_DISALLOW_COPY(word); public: word() = default; };
cannam@147 326 // word is an opaque type with size of 64 bits. This type is useful only to make pointer
cannam@147 327 // arithmetic clearer. Since the contents are private, the only way to access them is to first
cannam@147 328 // reinterpret_cast to some other pointer type.
cannam@147 329 //
cannam@147 330 // Copying is disallowed because you should always use memcpy(). Otherwise, you may run afoul of
cannam@147 331 // aliasing rules.
cannam@147 332 //
cannam@147 333 // A pointer of type word* should always be word-aligned even if won't actually be dereferenced as
cannam@147 334 // that type.
cannam@147 335
cannam@147 336 static_assert(sizeof(byte) == 1, "uint8_t is not one byte?");
cannam@147 337 static_assert(sizeof(word) == 8, "uint64_t is not 8 bytes?");
cannam@147 338
cannam@147 339 #if CAPNP_DEBUG_TYPES
cannam@147 340 // Set CAPNP_DEBUG_TYPES to 1 to use kj::Quantity for "count" types. Otherwise, plain integers are
cannam@147 341 // used. All the code should still operate exactly the same, we just lose compile-time checking.
cannam@147 342 // Note that this will also change symbol names, so it's important that the library and any clients
cannam@147 343 // be compiled with the same setting here.
cannam@147 344 //
cannam@147 345 // We disable this by default to reduce symbol name size and avoid any possibility of the compiler
cannam@147 346 // failing to fully-optimize the types, but anyone modifying Cap'n Proto itself should enable this
cannam@147 347 // during development and testing.
cannam@147 348
cannam@147 349 namespace _ { class BitLabel; class ElementLabel; struct WirePointer; }
cannam@147 350
cannam@147 351 template <uint width, typename T = uint>
cannam@147 352 using BitCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::BitLabel>;
cannam@147 353 template <uint width, typename T = uint>
cannam@147 354 using ByteCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, byte>;
cannam@147 355 template <uint width, typename T = uint>
cannam@147 356 using WordCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, word>;
cannam@147 357 template <uint width, typename T = uint>
cannam@147 358 using ElementCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::ElementLabel>;
cannam@147 359 template <uint width, typename T = uint>
cannam@147 360 using WirePointerCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::WirePointer>;
cannam@147 361
cannam@147 362 typedef BitCountN<8, uint8_t> BitCount8;
cannam@147 363 typedef BitCountN<16, uint16_t> BitCount16;
cannam@147 364 typedef BitCountN<32, uint32_t> BitCount32;
cannam@147 365 typedef BitCountN<64, uint64_t> BitCount64;
cannam@147 366 typedef BitCountN<sizeof(uint) * 8, uint> BitCount;
cannam@147 367
cannam@147 368 typedef ByteCountN<8, uint8_t> ByteCount8;
cannam@147 369 typedef ByteCountN<16, uint16_t> ByteCount16;
cannam@147 370 typedef ByteCountN<32, uint32_t> ByteCount32;
cannam@147 371 typedef ByteCountN<64, uint64_t> ByteCount64;
cannam@147 372 typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount;
cannam@147 373
cannam@147 374 typedef WordCountN<8, uint8_t> WordCount8;
cannam@147 375 typedef WordCountN<16, uint16_t> WordCount16;
cannam@147 376 typedef WordCountN<32, uint32_t> WordCount32;
cannam@147 377 typedef WordCountN<64, uint64_t> WordCount64;
cannam@147 378 typedef WordCountN<sizeof(uint) * 8, uint> WordCount;
cannam@147 379
cannam@147 380 typedef ElementCountN<8, uint8_t> ElementCount8;
cannam@147 381 typedef ElementCountN<16, uint16_t> ElementCount16;
cannam@147 382 typedef ElementCountN<32, uint32_t> ElementCount32;
cannam@147 383 typedef ElementCountN<64, uint64_t> ElementCount64;
cannam@147 384 typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount;
cannam@147 385
cannam@147 386 typedef WirePointerCountN<8, uint8_t> WirePointerCount8;
cannam@147 387 typedef WirePointerCountN<16, uint16_t> WirePointerCount16;
cannam@147 388 typedef WirePointerCountN<32, uint32_t> WirePointerCount32;
cannam@147 389 typedef WirePointerCountN<64, uint64_t> WirePointerCount64;
cannam@147 390 typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount;
cannam@147 391
cannam@147 392 template <uint width>
cannam@147 393 using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>());
cannam@147 394 template <uint width>
cannam@147 395 using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>());
cannam@147 396 template <uint width>
cannam@147 397 using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>());
cannam@147 398 template <uint width>
cannam@147 399 using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>());
cannam@147 400
cannam@147 401 using kj::bounded;
cannam@147 402 using kj::unbound;
cannam@147 403 using kj::unboundAs;
cannam@147 404 using kj::unboundMax;
cannam@147 405 using kj::unboundMaxBits;
cannam@147 406 using kj::assertMax;
cannam@147 407 using kj::assertMaxBits;
cannam@147 408 using kj::upgradeBound;
cannam@147 409 using kj::ThrowOverflow;
cannam@147 410 using kj::assumeBits;
cannam@147 411 using kj::assumeMax;
cannam@147 412 using kj::subtractChecked;
cannam@147 413 using kj::trySubtract;
cannam@147 414
cannam@147 415 template <typename T, typename U>
cannam@147 416 inline constexpr U* operator+(U* ptr, kj::Quantity<T, U> offset) {
cannam@147 417 return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
cannam@147 418 }
cannam@147 419 template <typename T, typename U>
cannam@147 420 inline constexpr const U* operator+(const U* ptr, kj::Quantity<T, U> offset) {
cannam@147 421 return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
cannam@147 422 }
cannam@147 423 template <typename T, typename U>
cannam@147 424 inline constexpr U* operator+=(U*& ptr, kj::Quantity<T, U> offset) {
cannam@147 425 return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
cannam@147 426 }
cannam@147 427 template <typename T, typename U>
cannam@147 428 inline constexpr const U* operator+=(const U*& ptr, kj::Quantity<T, U> offset) {
cannam@147 429 return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
cannam@147 430 }
cannam@147 431
cannam@147 432 template <typename T, typename U>
cannam@147 433 inline constexpr U* operator-(U* ptr, kj::Quantity<T, U> offset) {
cannam@147 434 return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
cannam@147 435 }
cannam@147 436 template <typename T, typename U>
cannam@147 437 inline constexpr const U* operator-(const U* ptr, kj::Quantity<T, U> offset) {
cannam@147 438 return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
cannam@147 439 }
cannam@147 440 template <typename T, typename U>
cannam@147 441 inline constexpr U* operator-=(U*& ptr, kj::Quantity<T, U> offset) {
cannam@147 442 return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
cannam@147 443 }
cannam@147 444 template <typename T, typename U>
cannam@147 445 inline constexpr const U* operator-=(const U*& ptr, kj::Quantity<T, U> offset) {
cannam@147 446 return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
cannam@147 447 }
cannam@147 448
cannam@147 449 constexpr auto BITS = kj::unit<BitCountN<1>>();
cannam@147 450 constexpr auto BYTES = kj::unit<ByteCountN<1>>();
cannam@147 451 constexpr auto WORDS = kj::unit<WordCountN<1>>();
cannam@147 452 constexpr auto ELEMENTS = kj::unit<ElementCountN<1>>();
cannam@147 453 constexpr auto POINTERS = kj::unit<WirePointerCountN<1>>();
cannam@147 454
cannam@147 455 constexpr auto ZERO = kj::bounded<0>();
cannam@147 456 constexpr auto ONE = kj::bounded<1>();
cannam@147 457
cannam@147 458 // GCC 4.7 actually gives unused warnings on these constants in opt mode...
cannam@147 459 constexpr auto BITS_PER_BYTE KJ_UNUSED = bounded<8>() * BITS / BYTES;
cannam@147 460 constexpr auto BITS_PER_WORD KJ_UNUSED = bounded<64>() * BITS / WORDS;
cannam@147 461 constexpr auto BYTES_PER_WORD KJ_UNUSED = bounded<8>() * BYTES / WORDS;
cannam@147 462
cannam@147 463 constexpr auto BITS_PER_POINTER KJ_UNUSED = bounded<64>() * BITS / POINTERS;
cannam@147 464 constexpr auto BYTES_PER_POINTER KJ_UNUSED = bounded<8>() * BYTES / POINTERS;
cannam@147 465 constexpr auto WORDS_PER_POINTER KJ_UNUSED = ONE * WORDS / POINTERS;
cannam@147 466
cannam@147 467 constexpr auto POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER;
cannam@147 468
cannam@147 469 constexpr uint SEGMENT_WORD_COUNT_BITS = 29; // Number of words in a segment.
cannam@147 470 constexpr uint LIST_ELEMENT_COUNT_BITS = 29; // Number of elements in a list.
cannam@147 471 constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16; // Number of words in a Struct data section.
cannam@147 472 constexpr uint STRUCT_POINTER_COUNT_BITS = 16; // Number of pointers in a Struct pointer section.
cannam@147 473 constexpr uint BLOB_SIZE_BITS = 29; // Number of bytes in a blob.
cannam@147 474
cannam@147 475 typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount;
cannam@147 476 typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount;
cannam@147 477 typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount;
cannam@147 478 typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount;
cannam@147 479 typedef ByteCountN<BLOB_SIZE_BITS> BlobSize;
cannam@147 480
cannam@147 481 constexpr auto MAX_SEGMENT_WORDS =
cannam@147 482 bounded<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>()>() * WORDS;
cannam@147 483 constexpr auto MAX_LIST_ELEMENTS =
cannam@147 484 bounded<kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>()>() * ELEMENTS;
cannam@147 485 constexpr auto MAX_STUCT_DATA_WORDS =
cannam@147 486 bounded<kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>()>() * WORDS;
cannam@147 487 constexpr auto MAX_STRUCT_POINTER_COUNT =
cannam@147 488 bounded<kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>()>() * POINTERS;
cannam@147 489
cannam@147 490 using StructDataBitCount = decltype(WordCountN<STRUCT_POINTER_COUNT_BITS>() * BITS_PER_WORD);
cannam@147 491 // Number of bits in a Struct data segment (should come out to BitCountN<22>).
cannam@147 492
cannam@147 493 using StructDataOffset = decltype(StructDataBitCount() * (ONE * ELEMENTS / BITS));
cannam@147 494 using StructPointerOffset = StructPointerCount;
cannam@147 495 // Type of a field offset.
cannam@147 496
cannam@147 497 inline StructDataOffset assumeDataOffset(uint32_t offset) {
cannam@147 498 return assumeMax(MAX_STUCT_DATA_WORDS * BITS_PER_WORD * (ONE * ELEMENTS / BITS),
cannam@147 499 bounded(offset) * ELEMENTS);
cannam@147 500 }
cannam@147 501
cannam@147 502 inline StructPointerOffset assumePointerOffset(uint32_t offset) {
cannam@147 503 return assumeMax(MAX_STRUCT_POINTER_COUNT, bounded(offset) * POINTERS);
cannam@147 504 }
cannam@147 505
cannam@147 506 constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1;
cannam@147 507 typedef kj::Quantity<kj::Bounded<MAX_TEXT_SIZE, uint>, byte> TextSize;
cannam@147 508 // Not including NUL terminator.
cannam@147 509
cannam@147 510 template <typename T>
cannam@147 511 inline KJ_CONSTEXPR() decltype(bounded<sizeof(T)>() * BYTES / ELEMENTS) bytesPerElement() {
cannam@147 512 return bounded<sizeof(T)>() * BYTES / ELEMENTS;
cannam@147 513 }
cannam@147 514
cannam@147 515 template <typename T>
cannam@147 516 inline KJ_CONSTEXPR() decltype(bounded<sizeof(T) * 8>() * BITS / ELEMENTS) bitsPerElement() {
cannam@147 517 return bounded<sizeof(T) * 8>() * BITS / ELEMENTS;
cannam@147 518 }
cannam@147 519
cannam@147 520 template <typename T, uint maxN>
cannam@147 521 inline constexpr kj::Quantity<kj::Bounded<maxN, size_t>, T>
cannam@147 522 intervalLength(const T* a, const T* b, kj::Quantity<kj::BoundedConst<maxN>, T>) {
cannam@147 523 return kj::assumeMax<maxN>(b - a) * kj::unit<kj::Quantity<kj::BoundedConst<1u>, T>>();
cannam@147 524 }
cannam@147 525
cannam@147 526 template <typename T, typename U>
cannam@147 527 inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, kj::Quantity<T, U> size) {
cannam@147 528 return kj::ArrayPtr<const U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>()));
cannam@147 529 }
cannam@147 530 template <typename T, typename U>
cannam@147 531 inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, kj::Quantity<T, U> size) {
cannam@147 532 return kj::ArrayPtr<U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>()));
cannam@147 533 }
cannam@147 534
cannam@147 535 #else
cannam@147 536
cannam@147 537 template <uint width, typename T = uint>
cannam@147 538 using BitCountN = T;
cannam@147 539 template <uint width, typename T = uint>
cannam@147 540 using ByteCountN = T;
cannam@147 541 template <uint width, typename T = uint>
cannam@147 542 using WordCountN = T;
cannam@147 543 template <uint width, typename T = uint>
cannam@147 544 using ElementCountN = T;
cannam@147 545 template <uint width, typename T = uint>
cannam@147 546 using WirePointerCountN = T;
cannam@147 547
cannam@147 548
cannam@147 549 // XXX
cannam@147 550 typedef BitCountN<8, uint8_t> BitCount8;
cannam@147 551 typedef BitCountN<16, uint16_t> BitCount16;
cannam@147 552 typedef BitCountN<32, uint32_t> BitCount32;
cannam@147 553 typedef BitCountN<64, uint64_t> BitCount64;
cannam@147 554 typedef BitCountN<sizeof(uint) * 8, uint> BitCount;
cannam@147 555
cannam@147 556 typedef ByteCountN<8, uint8_t> ByteCount8;
cannam@147 557 typedef ByteCountN<16, uint16_t> ByteCount16;
cannam@147 558 typedef ByteCountN<32, uint32_t> ByteCount32;
cannam@147 559 typedef ByteCountN<64, uint64_t> ByteCount64;
cannam@147 560 typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount;
cannam@147 561
cannam@147 562 typedef WordCountN<8, uint8_t> WordCount8;
cannam@147 563 typedef WordCountN<16, uint16_t> WordCount16;
cannam@147 564 typedef WordCountN<32, uint32_t> WordCount32;
cannam@147 565 typedef WordCountN<64, uint64_t> WordCount64;
cannam@147 566 typedef WordCountN<sizeof(uint) * 8, uint> WordCount;
cannam@147 567
cannam@147 568 typedef ElementCountN<8, uint8_t> ElementCount8;
cannam@147 569 typedef ElementCountN<16, uint16_t> ElementCount16;
cannam@147 570 typedef ElementCountN<32, uint32_t> ElementCount32;
cannam@147 571 typedef ElementCountN<64, uint64_t> ElementCount64;
cannam@147 572 typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount;
cannam@147 573
cannam@147 574 typedef WirePointerCountN<8, uint8_t> WirePointerCount8;
cannam@147 575 typedef WirePointerCountN<16, uint16_t> WirePointerCount16;
cannam@147 576 typedef WirePointerCountN<32, uint32_t> WirePointerCount32;
cannam@147 577 typedef WirePointerCountN<64, uint64_t> WirePointerCount64;
cannam@147 578 typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount;
cannam@147 579
cannam@147 580 template <uint width>
cannam@147 581 using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>());
cannam@147 582 template <uint width>
cannam@147 583 using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>());
cannam@147 584 template <uint width>
cannam@147 585 using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>());
cannam@147 586 template <uint width>
cannam@147 587 using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>());
cannam@147 588
cannam@147 589 using kj::ThrowOverflow;
cannam@147 590 // YYY
cannam@147 591
cannam@147 592 template <uint i> inline constexpr uint bounded() { return i; }
cannam@147 593 template <typename T> inline constexpr T bounded(T i) { return i; }
cannam@147 594 template <typename T> inline constexpr T unbound(T i) { return i; }
cannam@147 595
cannam@147 596 template <typename T, typename U> inline constexpr T unboundAs(U i) { return i; }
cannam@147 597
cannam@147 598 template <uint64_t requestedMax, typename T> inline constexpr uint unboundMax(T i) { return i; }
cannam@147 599 template <uint bits, typename T> inline constexpr uint unboundMaxBits(T i) { return i; }
cannam@147 600
cannam@147 601 template <uint newMax, typename T, typename ErrorFunc>
cannam@147 602 inline T assertMax(T value, ErrorFunc&& func) {
cannam@147 603 if (KJ_UNLIKELY(value > newMax)) func();
cannam@147 604 return value;
cannam@147 605 }
cannam@147 606
cannam@147 607 template <typename T, typename ErrorFunc>
cannam@147 608 inline T assertMax(uint newMax, T value, ErrorFunc&& func) {
cannam@147 609 if (KJ_UNLIKELY(value > newMax)) func();
cannam@147 610 return value;
cannam@147 611 }
cannam@147 612
cannam@147 613 template <uint bits, typename T, typename ErrorFunc = ThrowOverflow>
cannam@147 614 inline T assertMaxBits(T value, ErrorFunc&& func = ErrorFunc()) {
cannam@147 615 if (KJ_UNLIKELY(value > kj::maxValueForBits<bits>())) func();
cannam@147 616 return value;
cannam@147 617 }
cannam@147 618
cannam@147 619 template <typename T, typename ErrorFunc = ThrowOverflow>
cannam@147 620 inline T assertMaxBits(uint bits, T value, ErrorFunc&& func = ErrorFunc()) {
cannam@147 621 if (KJ_UNLIKELY(value > (1ull << bits) - 1)) func();
cannam@147 622 return value;
cannam@147 623 }
cannam@147 624
cannam@147 625 template <typename T, typename U> inline constexpr T upgradeBound(U i) { return i; }
cannam@147 626
cannam@147 627 template <uint bits, typename T> inline constexpr T assumeBits(T i) { return i; }
cannam@147 628 template <uint64_t max, typename T> inline constexpr T assumeMax(T i) { return i; }
cannam@147 629
cannam@147 630 template <typename T, typename U, typename ErrorFunc = ThrowOverflow>
cannam@147 631 inline auto subtractChecked(T a, U b, ErrorFunc&& errorFunc = ErrorFunc())
cannam@147 632 -> decltype(a - b) {
cannam@147 633 if (b > a) errorFunc();
cannam@147 634 return a - b;
cannam@147 635 }
cannam@147 636
cannam@147 637 template <typename T, typename U>
cannam@147 638 inline auto trySubtract(T a, U b) -> kj::Maybe<decltype(a - b)> {
cannam@147 639 if (b > a) {
cannam@147 640 return nullptr;
cannam@147 641 } else {
cannam@147 642 return a - b;
cannam@147 643 }
cannam@147 644 }
cannam@147 645
cannam@147 646 constexpr uint BITS = 1;
cannam@147 647 constexpr uint BYTES = 1;
cannam@147 648 constexpr uint WORDS = 1;
cannam@147 649 constexpr uint ELEMENTS = 1;
cannam@147 650 constexpr uint POINTERS = 1;
cannam@147 651
cannam@147 652 constexpr uint ZERO = 0;
cannam@147 653 constexpr uint ONE = 1;
cannam@147 654
cannam@147 655 // GCC 4.7 actually gives unused warnings on these constants in opt mode...
cannam@147 656 constexpr uint BITS_PER_BYTE KJ_UNUSED = 8;
cannam@147 657 constexpr uint BITS_PER_WORD KJ_UNUSED = 64;
cannam@147 658 constexpr uint BYTES_PER_WORD KJ_UNUSED = 8;
cannam@147 659
cannam@147 660 constexpr uint BITS_PER_POINTER KJ_UNUSED = 64;
cannam@147 661 constexpr uint BYTES_PER_POINTER KJ_UNUSED = 8;
cannam@147 662 constexpr uint WORDS_PER_POINTER KJ_UNUSED = 1;
cannam@147 663
cannam@147 664 // XXX
cannam@147 665 constexpr uint POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER;
cannam@147 666
cannam@147 667 constexpr uint SEGMENT_WORD_COUNT_BITS = 29; // Number of words in a segment.
cannam@147 668 constexpr uint LIST_ELEMENT_COUNT_BITS = 29; // Number of elements in a list.
cannam@147 669 constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16; // Number of words in a Struct data section.
cannam@147 670 constexpr uint STRUCT_POINTER_COUNT_BITS = 16; // Number of pointers in a Struct pointer section.
cannam@147 671 constexpr uint BLOB_SIZE_BITS = 29; // Number of bytes in a blob.
cannam@147 672
cannam@147 673 typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount;
cannam@147 674 typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount;
cannam@147 675 typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount;
cannam@147 676 typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount;
cannam@147 677 typedef ByteCountN<BLOB_SIZE_BITS> BlobSize;
cannam@147 678 // YYY
cannam@147 679
cannam@147 680 constexpr auto MAX_SEGMENT_WORDS = kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>();
cannam@147 681 constexpr auto MAX_LIST_ELEMENTS = kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>();
cannam@147 682 constexpr auto MAX_STUCT_DATA_WORDS = kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>();
cannam@147 683 constexpr auto MAX_STRUCT_POINTER_COUNT = kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>();
cannam@147 684
cannam@147 685 typedef uint StructDataBitCount;
cannam@147 686 typedef uint StructDataOffset;
cannam@147 687 typedef uint StructPointerOffset;
cannam@147 688
cannam@147 689 inline StructDataOffset assumeDataOffset(uint32_t offset) { return offset; }
cannam@147 690 inline StructPointerOffset assumePointerOffset(uint32_t offset) { return offset; }
cannam@147 691
cannam@147 692 constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1;
cannam@147 693 typedef uint TextSize;
cannam@147 694
cannam@147 695 template <typename T>
cannam@147 696 inline KJ_CONSTEXPR() size_t bytesPerElement() { return sizeof(T); }
cannam@147 697
cannam@147 698 template <typename T>
cannam@147 699 inline KJ_CONSTEXPR() size_t bitsPerElement() { return sizeof(T) * 8; }
cannam@147 700
cannam@147 701 template <typename T>
cannam@147 702 inline constexpr ptrdiff_t intervalLength(const T* a, const T* b, uint) {
cannam@147 703 return b - a;
cannam@147 704 }
cannam@147 705
cannam@147 706 template <typename T, typename U>
cannam@147 707 inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, T size) {
cannam@147 708 return kj::arrayPtr(ptr, size);
cannam@147 709 }
cannam@147 710 template <typename T, typename U>
cannam@147 711 inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, T size) {
cannam@147 712 return kj::arrayPtr(ptr, size);
cannam@147 713 }
cannam@147 714
cannam@147 715 #endif
cannam@147 716
cannam@147 717 } // namespace capnp
cannam@147 718
cannam@147 719 #endif // CAPNP_COMMON_H_