annotate src/zlib-1.2.7/examples/zran.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents e13257ea84a4
children
rev   line source
Chris@4 1 /* zran.c -- example of zlib/gzip stream indexing and random access
Chris@4 2 * Copyright (C) 2005 Mark Adler
Chris@4 3 * For conditions of distribution and use, see copyright notice in zlib.h
Chris@4 4 Version 1.0 29 May 2005 Mark Adler */
Chris@4 5
Chris@4 6 /* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
Chris@4 7 for random access of a compressed file. A file containing a zlib or gzip
Chris@4 8 stream is provided on the command line. The compressed stream is decoded in
Chris@4 9 its entirety, and an index built with access points about every SPAN bytes
Chris@4 10 in the uncompressed output. The compressed file is left open, and can then
Chris@4 11 be read randomly, having to decompress on the average SPAN/2 uncompressed
Chris@4 12 bytes before getting to the desired block of data.
Chris@4 13
Chris@4 14 An access point can be created at the start of any deflate block, by saving
Chris@4 15 the starting file offset and bit of that block, and the 32K bytes of
Chris@4 16 uncompressed data that precede that block. Also the uncompressed offset of
Chris@4 17 that block is saved to provide a referece for locating a desired starting
Chris@4 18 point in the uncompressed stream. build_index() works by decompressing the
Chris@4 19 input zlib or gzip stream a block at a time, and at the end of each block
Chris@4 20 deciding if enough uncompressed data has gone by to justify the creation of
Chris@4 21 a new access point. If so, that point is saved in a data structure that
Chris@4 22 grows as needed to accommodate the points.
Chris@4 23
Chris@4 24 To use the index, an offset in the uncompressed data is provided, for which
Chris@4 25 the latest accees point at or preceding that offset is located in the index.
Chris@4 26 The input file is positioned to the specified location in the index, and if
Chris@4 27 necessary the first few bits of the compressed data is read from the file.
Chris@4 28 inflate is initialized with those bits and the 32K of uncompressed data, and
Chris@4 29 the decompression then proceeds until the desired offset in the file is
Chris@4 30 reached. Then the decompression continues to read the desired uncompressed
Chris@4 31 data from the file.
Chris@4 32
Chris@4 33 Another approach would be to generate the index on demand. In that case,
Chris@4 34 requests for random access reads from the compressed data would try to use
Chris@4 35 the index, but if a read far enough past the end of the index is required,
Chris@4 36 then further index entries would be generated and added.
Chris@4 37
Chris@4 38 There is some fair bit of overhead to starting inflation for the random
Chris@4 39 access, mainly copying the 32K byte dictionary. So if small pieces of the
Chris@4 40 file are being accessed, it would make sense to implement a cache to hold
Chris@4 41 some lookahead and avoid many calls to extract() for small lengths.
Chris@4 42
Chris@4 43 Another way to build an index would be to use inflateCopy(). That would
Chris@4 44 not be constrained to have access points at block boundaries, but requires
Chris@4 45 more memory per access point, and also cannot be saved to file due to the
Chris@4 46 use of pointers in the state. The approach here allows for storage of the
Chris@4 47 index in a file.
Chris@4 48 */
Chris@4 49
Chris@4 50 #include <stdio.h>
Chris@4 51 #include <stdlib.h>
Chris@4 52 #include <string.h>
Chris@4 53 #include "zlib.h"
Chris@4 54
Chris@4 55 #define local static
Chris@4 56
Chris@4 57 #define SPAN 1048576L /* desired distance between access points */
Chris@4 58 #define WINSIZE 32768U /* sliding window size */
Chris@4 59 #define CHUNK 16384 /* file input buffer size */
Chris@4 60
Chris@4 61 /* access point entry */
Chris@4 62 struct point {
Chris@4 63 off_t out; /* corresponding offset in uncompressed data */
Chris@4 64 off_t in; /* offset in input file of first full byte */
Chris@4 65 int bits; /* number of bits (1-7) from byte at in - 1, or 0 */
Chris@4 66 unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
Chris@4 67 };
Chris@4 68
Chris@4 69 /* access point list */
Chris@4 70 struct access {
Chris@4 71 int have; /* number of list entries filled in */
Chris@4 72 int size; /* number of list entries allocated */
Chris@4 73 struct point *list; /* allocated list */
Chris@4 74 };
Chris@4 75
Chris@4 76 /* Deallocate an index built by build_index() */
Chris@4 77 local void free_index(struct access *index)
Chris@4 78 {
Chris@4 79 if (index != NULL) {
Chris@4 80 free(index->list);
Chris@4 81 free(index);
Chris@4 82 }
Chris@4 83 }
Chris@4 84
Chris@4 85 /* Add an entry to the access point list. If out of memory, deallocate the
Chris@4 86 existing list and return NULL. */
Chris@4 87 local struct access *addpoint(struct access *index, int bits,
Chris@4 88 off_t in, off_t out, unsigned left, unsigned char *window)
Chris@4 89 {
Chris@4 90 struct point *next;
Chris@4 91
Chris@4 92 /* if list is empty, create it (start with eight points) */
Chris@4 93 if (index == NULL) {
Chris@4 94 index = malloc(sizeof(struct access));
Chris@4 95 if (index == NULL) return NULL;
Chris@4 96 index->list = malloc(sizeof(struct point) << 3);
Chris@4 97 if (index->list == NULL) {
Chris@4 98 free(index);
Chris@4 99 return NULL;
Chris@4 100 }
Chris@4 101 index->size = 8;
Chris@4 102 index->have = 0;
Chris@4 103 }
Chris@4 104
Chris@4 105 /* if list is full, make it bigger */
Chris@4 106 else if (index->have == index->size) {
Chris@4 107 index->size <<= 1;
Chris@4 108 next = realloc(index->list, sizeof(struct point) * index->size);
Chris@4 109 if (next == NULL) {
Chris@4 110 free_index(index);
Chris@4 111 return NULL;
Chris@4 112 }
Chris@4 113 index->list = next;
Chris@4 114 }
Chris@4 115
Chris@4 116 /* fill in entry and increment how many we have */
Chris@4 117 next = index->list + index->have;
Chris@4 118 next->bits = bits;
Chris@4 119 next->in = in;
Chris@4 120 next->out = out;
Chris@4 121 if (left)
Chris@4 122 memcpy(next->window, window + WINSIZE - left, left);
Chris@4 123 if (left < WINSIZE)
Chris@4 124 memcpy(next->window + left, window, WINSIZE - left);
Chris@4 125 index->have++;
Chris@4 126
Chris@4 127 /* return list, possibly reallocated */
Chris@4 128 return index;
Chris@4 129 }
Chris@4 130
Chris@4 131 /* Make one entire pass through the compressed stream and build an index, with
Chris@4 132 access points about every span bytes of uncompressed output -- span is
Chris@4 133 chosen to balance the speed of random access against the memory requirements
Chris@4 134 of the list, about 32K bytes per access point. Note that data after the end
Chris@4 135 of the first zlib or gzip stream in the file is ignored. build_index()
Chris@4 136 returns the number of access points on success (>= 1), Z_MEM_ERROR for out
Chris@4 137 of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
Chris@4 138 file read error. On success, *built points to the resulting index. */
Chris@4 139 local int build_index(FILE *in, off_t span, struct access **built)
Chris@4 140 {
Chris@4 141 int ret;
Chris@4 142 off_t totin, totout; /* our own total counters to avoid 4GB limit */
Chris@4 143 off_t last; /* totout value of last access point */
Chris@4 144 struct access *index; /* access points being generated */
Chris@4 145 z_stream strm;
Chris@4 146 unsigned char input[CHUNK];
Chris@4 147 unsigned char window[WINSIZE];
Chris@4 148
Chris@4 149 /* initialize inflate */
Chris@4 150 strm.zalloc = Z_NULL;
Chris@4 151 strm.zfree = Z_NULL;
Chris@4 152 strm.opaque = Z_NULL;
Chris@4 153 strm.avail_in = 0;
Chris@4 154 strm.next_in = Z_NULL;
Chris@4 155 ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
Chris@4 156 if (ret != Z_OK)
Chris@4 157 return ret;
Chris@4 158
Chris@4 159 /* inflate the input, maintain a sliding window, and build an index -- this
Chris@4 160 also validates the integrity of the compressed data using the check
Chris@4 161 information at the end of the gzip or zlib stream */
Chris@4 162 totin = totout = last = 0;
Chris@4 163 index = NULL; /* will be allocated by first addpoint() */
Chris@4 164 strm.avail_out = 0;
Chris@4 165 do {
Chris@4 166 /* get some compressed data from input file */
Chris@4 167 strm.avail_in = fread(input, 1, CHUNK, in);
Chris@4 168 if (ferror(in)) {
Chris@4 169 ret = Z_ERRNO;
Chris@4 170 goto build_index_error;
Chris@4 171 }
Chris@4 172 if (strm.avail_in == 0) {
Chris@4 173 ret = Z_DATA_ERROR;
Chris@4 174 goto build_index_error;
Chris@4 175 }
Chris@4 176 strm.next_in = input;
Chris@4 177
Chris@4 178 /* process all of that, or until end of stream */
Chris@4 179 do {
Chris@4 180 /* reset sliding window if necessary */
Chris@4 181 if (strm.avail_out == 0) {
Chris@4 182 strm.avail_out = WINSIZE;
Chris@4 183 strm.next_out = window;
Chris@4 184 }
Chris@4 185
Chris@4 186 /* inflate until out of input, output, or at end of block --
Chris@4 187 update the total input and output counters */
Chris@4 188 totin += strm.avail_in;
Chris@4 189 totout += strm.avail_out;
Chris@4 190 ret = inflate(&strm, Z_BLOCK); /* return at end of block */
Chris@4 191 totin -= strm.avail_in;
Chris@4 192 totout -= strm.avail_out;
Chris@4 193 if (ret == Z_NEED_DICT)
Chris@4 194 ret = Z_DATA_ERROR;
Chris@4 195 if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
Chris@4 196 goto build_index_error;
Chris@4 197 if (ret == Z_STREAM_END)
Chris@4 198 break;
Chris@4 199
Chris@4 200 /* if at end of block, consider adding an index entry (note that if
Chris@4 201 data_type indicates an end-of-block, then all of the
Chris@4 202 uncompressed data from that block has been delivered, and none
Chris@4 203 of the compressed data after that block has been consumed,
Chris@4 204 except for up to seven bits) -- the totout == 0 provides an
Chris@4 205 entry point after the zlib or gzip header, and assures that the
Chris@4 206 index always has at least one access point; we avoid creating an
Chris@4 207 access point after the last block by checking bit 6 of data_type
Chris@4 208 */
Chris@4 209 if ((strm.data_type & 128) && !(strm.data_type & 64) &&
Chris@4 210 (totout == 0 || totout - last > span)) {
Chris@4 211 index = addpoint(index, strm.data_type & 7, totin,
Chris@4 212 totout, strm.avail_out, window);
Chris@4 213 if (index == NULL) {
Chris@4 214 ret = Z_MEM_ERROR;
Chris@4 215 goto build_index_error;
Chris@4 216 }
Chris@4 217 last = totout;
Chris@4 218 }
Chris@4 219 } while (strm.avail_in != 0);
Chris@4 220 } while (ret != Z_STREAM_END);
Chris@4 221
Chris@4 222 /* clean up and return index (release unused entries in list) */
Chris@4 223 (void)inflateEnd(&strm);
Chris@4 224 index = realloc(index, sizeof(struct point) * index->have);
Chris@4 225 index->size = index->have;
Chris@4 226 *built = index;
Chris@4 227 return index->size;
Chris@4 228
Chris@4 229 /* return error */
Chris@4 230 build_index_error:
Chris@4 231 (void)inflateEnd(&strm);
Chris@4 232 if (index != NULL)
Chris@4 233 free_index(index);
Chris@4 234 return ret;
Chris@4 235 }
Chris@4 236
Chris@4 237 /* Use the index to read len bytes from offset into buf, return bytes read or
Chris@4 238 negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
Chris@4 239 the end of the uncompressed data, then extract() will return a value less
Chris@4 240 than len, indicating how much as actually read into buf. This function
Chris@4 241 should not return a data error unless the file was modified since the index
Chris@4 242 was generated. extract() may also return Z_ERRNO if there is an error on
Chris@4 243 reading or seeking the input file. */
Chris@4 244 local int extract(FILE *in, struct access *index, off_t offset,
Chris@4 245 unsigned char *buf, int len)
Chris@4 246 {
Chris@4 247 int ret, skip;
Chris@4 248 z_stream strm;
Chris@4 249 struct point *here;
Chris@4 250 unsigned char input[CHUNK];
Chris@4 251 unsigned char discard[WINSIZE];
Chris@4 252
Chris@4 253 /* proceed only if something reasonable to do */
Chris@4 254 if (len < 0)
Chris@4 255 return 0;
Chris@4 256
Chris@4 257 /* find where in stream to start */
Chris@4 258 here = index->list;
Chris@4 259 ret = index->have;
Chris@4 260 while (--ret && here[1].out <= offset)
Chris@4 261 here++;
Chris@4 262
Chris@4 263 /* initialize file and inflate state to start there */
Chris@4 264 strm.zalloc = Z_NULL;
Chris@4 265 strm.zfree = Z_NULL;
Chris@4 266 strm.opaque = Z_NULL;
Chris@4 267 strm.avail_in = 0;
Chris@4 268 strm.next_in = Z_NULL;
Chris@4 269 ret = inflateInit2(&strm, -15); /* raw inflate */
Chris@4 270 if (ret != Z_OK)
Chris@4 271 return ret;
Chris@4 272 ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
Chris@4 273 if (ret == -1)
Chris@4 274 goto extract_ret;
Chris@4 275 if (here->bits) {
Chris@4 276 ret = getc(in);
Chris@4 277 if (ret == -1) {
Chris@4 278 ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
Chris@4 279 goto extract_ret;
Chris@4 280 }
Chris@4 281 (void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
Chris@4 282 }
Chris@4 283 (void)inflateSetDictionary(&strm, here->window, WINSIZE);
Chris@4 284
Chris@4 285 /* skip uncompressed bytes until offset reached, then satisfy request */
Chris@4 286 offset -= here->out;
Chris@4 287 strm.avail_in = 0;
Chris@4 288 skip = 1; /* while skipping to offset */
Chris@4 289 do {
Chris@4 290 /* define where to put uncompressed data, and how much */
Chris@4 291 if (offset == 0 && skip) { /* at offset now */
Chris@4 292 strm.avail_out = len;
Chris@4 293 strm.next_out = buf;
Chris@4 294 skip = 0; /* only do this once */
Chris@4 295 }
Chris@4 296 if (offset > WINSIZE) { /* skip WINSIZE bytes */
Chris@4 297 strm.avail_out = WINSIZE;
Chris@4 298 strm.next_out = discard;
Chris@4 299 offset -= WINSIZE;
Chris@4 300 }
Chris@4 301 else if (offset != 0) { /* last skip */
Chris@4 302 strm.avail_out = (unsigned)offset;
Chris@4 303 strm.next_out = discard;
Chris@4 304 offset = 0;
Chris@4 305 }
Chris@4 306
Chris@4 307 /* uncompress until avail_out filled, or end of stream */
Chris@4 308 do {
Chris@4 309 if (strm.avail_in == 0) {
Chris@4 310 strm.avail_in = fread(input, 1, CHUNK, in);
Chris@4 311 if (ferror(in)) {
Chris@4 312 ret = Z_ERRNO;
Chris@4 313 goto extract_ret;
Chris@4 314 }
Chris@4 315 if (strm.avail_in == 0) {
Chris@4 316 ret = Z_DATA_ERROR;
Chris@4 317 goto extract_ret;
Chris@4 318 }
Chris@4 319 strm.next_in = input;
Chris@4 320 }
Chris@4 321 ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
Chris@4 322 if (ret == Z_NEED_DICT)
Chris@4 323 ret = Z_DATA_ERROR;
Chris@4 324 if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
Chris@4 325 goto extract_ret;
Chris@4 326 if (ret == Z_STREAM_END)
Chris@4 327 break;
Chris@4 328 } while (strm.avail_out != 0);
Chris@4 329
Chris@4 330 /* if reach end of stream, then don't keep trying to get more */
Chris@4 331 if (ret == Z_STREAM_END)
Chris@4 332 break;
Chris@4 333
Chris@4 334 /* do until offset reached and requested data read, or stream ends */
Chris@4 335 } while (skip);
Chris@4 336
Chris@4 337 /* compute number of uncompressed bytes read after offset */
Chris@4 338 ret = skip ? 0 : len - strm.avail_out;
Chris@4 339
Chris@4 340 /* clean up and return bytes read or error */
Chris@4 341 extract_ret:
Chris@4 342 (void)inflateEnd(&strm);
Chris@4 343 return ret;
Chris@4 344 }
Chris@4 345
Chris@4 346 /* Demonstrate the use of build_index() and extract() by processing the file
Chris@4 347 provided on the command line, and the extracting 16K from about 2/3rds of
Chris@4 348 the way through the uncompressed output, and writing that to stdout. */
Chris@4 349 int main(int argc, char **argv)
Chris@4 350 {
Chris@4 351 int len;
Chris@4 352 off_t offset;
Chris@4 353 FILE *in;
Chris@4 354 struct access *index = NULL;
Chris@4 355 unsigned char buf[CHUNK];
Chris@4 356
Chris@4 357 /* open input file */
Chris@4 358 if (argc != 2) {
Chris@4 359 fprintf(stderr, "usage: zran file.gz\n");
Chris@4 360 return 1;
Chris@4 361 }
Chris@4 362 in = fopen(argv[1], "rb");
Chris@4 363 if (in == NULL) {
Chris@4 364 fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
Chris@4 365 return 1;
Chris@4 366 }
Chris@4 367
Chris@4 368 /* build index */
Chris@4 369 len = build_index(in, SPAN, &index);
Chris@4 370 if (len < 0) {
Chris@4 371 fclose(in);
Chris@4 372 switch (len) {
Chris@4 373 case Z_MEM_ERROR:
Chris@4 374 fprintf(stderr, "zran: out of memory\n");
Chris@4 375 break;
Chris@4 376 case Z_DATA_ERROR:
Chris@4 377 fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
Chris@4 378 break;
Chris@4 379 case Z_ERRNO:
Chris@4 380 fprintf(stderr, "zran: read error on %s\n", argv[1]);
Chris@4 381 break;
Chris@4 382 default:
Chris@4 383 fprintf(stderr, "zran: error %d while building index\n", len);
Chris@4 384 }
Chris@4 385 return 1;
Chris@4 386 }
Chris@4 387 fprintf(stderr, "zran: built index with %d access points\n", len);
Chris@4 388
Chris@4 389 /* use index by reading some bytes from an arbitrary offset */
Chris@4 390 offset = (index->list[index->have - 1].out << 1) / 3;
Chris@4 391 len = extract(in, index, offset, buf, CHUNK);
Chris@4 392 if (len < 0)
Chris@4 393 fprintf(stderr, "zran: extraction failed: %s error\n",
Chris@4 394 len == Z_MEM_ERROR ? "out of memory" : "input corrupted");
Chris@4 395 else {
Chris@4 396 fwrite(buf, 1, len, stdout);
Chris@4 397 fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset);
Chris@4 398 }
Chris@4 399
Chris@4 400 /* clean up and exit */
Chris@4 401 free_index(index);
Chris@4 402 fclose(in);
Chris@4 403 return 0;
Chris@4 404 }