annotate src/zlib-1.2.7/contrib/infback9/inftree9.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents e13257ea84a4
children
rev   line source
Chris@4 1 /* inftree9.c -- generate Huffman trees for efficient decoding
Chris@4 2 * Copyright (C) 1995-2012 Mark Adler
Chris@4 3 * For conditions of distribution and use, see copyright notice in zlib.h
Chris@4 4 */
Chris@4 5
Chris@4 6 #include "zutil.h"
Chris@4 7 #include "inftree9.h"
Chris@4 8
Chris@4 9 #define MAXBITS 15
Chris@4 10
Chris@4 11 const char inflate9_copyright[] =
Chris@4 12 " inflate9 1.2.7 Copyright 1995-2012 Mark Adler ";
Chris@4 13 /*
Chris@4 14 If you use the zlib library in a product, an acknowledgment is welcome
Chris@4 15 in the documentation of your product. If for some reason you cannot
Chris@4 16 include such an acknowledgment, I would appreciate that you keep this
Chris@4 17 copyright string in the executable of your product.
Chris@4 18 */
Chris@4 19
Chris@4 20 /*
Chris@4 21 Build a set of tables to decode the provided canonical Huffman code.
Chris@4 22 The code lengths are lens[0..codes-1]. The result starts at *table,
Chris@4 23 whose indices are 0..2^bits-1. work is a writable array of at least
Chris@4 24 lens shorts, which is used as a work area. type is the type of code
Chris@4 25 to be generated, CODES, LENS, or DISTS. On return, zero is success,
Chris@4 26 -1 is an invalid code, and +1 means that ENOUGH isn't enough. table
Chris@4 27 on return points to the next available entry's address. bits is the
Chris@4 28 requested root table index bits, and on return it is the actual root
Chris@4 29 table index bits. It will differ if the request is greater than the
Chris@4 30 longest code or if it is less than the shortest code.
Chris@4 31 */
Chris@4 32 int inflate_table9(type, lens, codes, table, bits, work)
Chris@4 33 codetype type;
Chris@4 34 unsigned short FAR *lens;
Chris@4 35 unsigned codes;
Chris@4 36 code FAR * FAR *table;
Chris@4 37 unsigned FAR *bits;
Chris@4 38 unsigned short FAR *work;
Chris@4 39 {
Chris@4 40 unsigned len; /* a code's length in bits */
Chris@4 41 unsigned sym; /* index of code symbols */
Chris@4 42 unsigned min, max; /* minimum and maximum code lengths */
Chris@4 43 unsigned root; /* number of index bits for root table */
Chris@4 44 unsigned curr; /* number of index bits for current table */
Chris@4 45 unsigned drop; /* code bits to drop for sub-table */
Chris@4 46 int left; /* number of prefix codes available */
Chris@4 47 unsigned used; /* code entries in table used */
Chris@4 48 unsigned huff; /* Huffman code */
Chris@4 49 unsigned incr; /* for incrementing code, index */
Chris@4 50 unsigned fill; /* index for replicating entries */
Chris@4 51 unsigned low; /* low bits for current root entry */
Chris@4 52 unsigned mask; /* mask for low root bits */
Chris@4 53 code this; /* table entry for duplication */
Chris@4 54 code FAR *next; /* next available space in table */
Chris@4 55 const unsigned short FAR *base; /* base value table to use */
Chris@4 56 const unsigned short FAR *extra; /* extra bits table to use */
Chris@4 57 int end; /* use base and extra for symbol > end */
Chris@4 58 unsigned short count[MAXBITS+1]; /* number of codes of each length */
Chris@4 59 unsigned short offs[MAXBITS+1]; /* offsets in table for each length */
Chris@4 60 static const unsigned short lbase[31] = { /* Length codes 257..285 base */
Chris@4 61 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17,
Chris@4 62 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115,
Chris@4 63 131, 163, 195, 227, 3, 0, 0};
Chris@4 64 static const unsigned short lext[31] = { /* Length codes 257..285 extra */
Chris@4 65 128, 128, 128, 128, 128, 128, 128, 128, 129, 129, 129, 129,
Chris@4 66 130, 130, 130, 130, 131, 131, 131, 131, 132, 132, 132, 132,
Chris@4 67 133, 133, 133, 133, 144, 78, 68};
Chris@4 68 static const unsigned short dbase[32] = { /* Distance codes 0..31 base */
Chris@4 69 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49,
Chris@4 70 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073,
Chris@4 71 4097, 6145, 8193, 12289, 16385, 24577, 32769, 49153};
Chris@4 72 static const unsigned short dext[32] = { /* Distance codes 0..31 extra */
Chris@4 73 128, 128, 128, 128, 129, 129, 130, 130, 131, 131, 132, 132,
Chris@4 74 133, 133, 134, 134, 135, 135, 136, 136, 137, 137, 138, 138,
Chris@4 75 139, 139, 140, 140, 141, 141, 142, 142};
Chris@4 76
Chris@4 77 /*
Chris@4 78 Process a set of code lengths to create a canonical Huffman code. The
Chris@4 79 code lengths are lens[0..codes-1]. Each length corresponds to the
Chris@4 80 symbols 0..codes-1. The Huffman code is generated by first sorting the
Chris@4 81 symbols by length from short to long, and retaining the symbol order
Chris@4 82 for codes with equal lengths. Then the code starts with all zero bits
Chris@4 83 for the first code of the shortest length, and the codes are integer
Chris@4 84 increments for the same length, and zeros are appended as the length
Chris@4 85 increases. For the deflate format, these bits are stored backwards
Chris@4 86 from their more natural integer increment ordering, and so when the
Chris@4 87 decoding tables are built in the large loop below, the integer codes
Chris@4 88 are incremented backwards.
Chris@4 89
Chris@4 90 This routine assumes, but does not check, that all of the entries in
Chris@4 91 lens[] are in the range 0..MAXBITS. The caller must assure this.
Chris@4 92 1..MAXBITS is interpreted as that code length. zero means that that
Chris@4 93 symbol does not occur in this code.
Chris@4 94
Chris@4 95 The codes are sorted by computing a count of codes for each length,
Chris@4 96 creating from that a table of starting indices for each length in the
Chris@4 97 sorted table, and then entering the symbols in order in the sorted
Chris@4 98 table. The sorted table is work[], with that space being provided by
Chris@4 99 the caller.
Chris@4 100
Chris@4 101 The length counts are used for other purposes as well, i.e. finding
Chris@4 102 the minimum and maximum length codes, determining if there are any
Chris@4 103 codes at all, checking for a valid set of lengths, and looking ahead
Chris@4 104 at length counts to determine sub-table sizes when building the
Chris@4 105 decoding tables.
Chris@4 106 */
Chris@4 107
Chris@4 108 /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
Chris@4 109 for (len = 0; len <= MAXBITS; len++)
Chris@4 110 count[len] = 0;
Chris@4 111 for (sym = 0; sym < codes; sym++)
Chris@4 112 count[lens[sym]]++;
Chris@4 113
Chris@4 114 /* bound code lengths, force root to be within code lengths */
Chris@4 115 root = *bits;
Chris@4 116 for (max = MAXBITS; max >= 1; max--)
Chris@4 117 if (count[max] != 0) break;
Chris@4 118 if (root > max) root = max;
Chris@4 119 if (max == 0) return -1; /* no codes! */
Chris@4 120 for (min = 1; min <= MAXBITS; min++)
Chris@4 121 if (count[min] != 0) break;
Chris@4 122 if (root < min) root = min;
Chris@4 123
Chris@4 124 /* check for an over-subscribed or incomplete set of lengths */
Chris@4 125 left = 1;
Chris@4 126 for (len = 1; len <= MAXBITS; len++) {
Chris@4 127 left <<= 1;
Chris@4 128 left -= count[len];
Chris@4 129 if (left < 0) return -1; /* over-subscribed */
Chris@4 130 }
Chris@4 131 if (left > 0 && (type == CODES || max != 1))
Chris@4 132 return -1; /* incomplete set */
Chris@4 133
Chris@4 134 /* generate offsets into symbol table for each length for sorting */
Chris@4 135 offs[1] = 0;
Chris@4 136 for (len = 1; len < MAXBITS; len++)
Chris@4 137 offs[len + 1] = offs[len] + count[len];
Chris@4 138
Chris@4 139 /* sort symbols by length, by symbol order within each length */
Chris@4 140 for (sym = 0; sym < codes; sym++)
Chris@4 141 if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
Chris@4 142
Chris@4 143 /*
Chris@4 144 Create and fill in decoding tables. In this loop, the table being
Chris@4 145 filled is at next and has curr index bits. The code being used is huff
Chris@4 146 with length len. That code is converted to an index by dropping drop
Chris@4 147 bits off of the bottom. For codes where len is less than drop + curr,
Chris@4 148 those top drop + curr - len bits are incremented through all values to
Chris@4 149 fill the table with replicated entries.
Chris@4 150
Chris@4 151 root is the number of index bits for the root table. When len exceeds
Chris@4 152 root, sub-tables are created pointed to by the root entry with an index
Chris@4 153 of the low root bits of huff. This is saved in low to check for when a
Chris@4 154 new sub-table should be started. drop is zero when the root table is
Chris@4 155 being filled, and drop is root when sub-tables are being filled.
Chris@4 156
Chris@4 157 When a new sub-table is needed, it is necessary to look ahead in the
Chris@4 158 code lengths to determine what size sub-table is needed. The length
Chris@4 159 counts are used for this, and so count[] is decremented as codes are
Chris@4 160 entered in the tables.
Chris@4 161
Chris@4 162 used keeps track of how many table entries have been allocated from the
Chris@4 163 provided *table space. It is checked for LENS and DIST tables against
Chris@4 164 the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
Chris@4 165 the initial root table size constants. See the comments in inftree9.h
Chris@4 166 for more information.
Chris@4 167
Chris@4 168 sym increments through all symbols, and the loop terminates when
Chris@4 169 all codes of length max, i.e. all codes, have been processed. This
Chris@4 170 routine permits incomplete codes, so another loop after this one fills
Chris@4 171 in the rest of the decoding tables with invalid code markers.
Chris@4 172 */
Chris@4 173
Chris@4 174 /* set up for code type */
Chris@4 175 switch (type) {
Chris@4 176 case CODES:
Chris@4 177 base = extra = work; /* dummy value--not used */
Chris@4 178 end = 19;
Chris@4 179 break;
Chris@4 180 case LENS:
Chris@4 181 base = lbase;
Chris@4 182 base -= 257;
Chris@4 183 extra = lext;
Chris@4 184 extra -= 257;
Chris@4 185 end = 256;
Chris@4 186 break;
Chris@4 187 default: /* DISTS */
Chris@4 188 base = dbase;
Chris@4 189 extra = dext;
Chris@4 190 end = -1;
Chris@4 191 }
Chris@4 192
Chris@4 193 /* initialize state for loop */
Chris@4 194 huff = 0; /* starting code */
Chris@4 195 sym = 0; /* starting code symbol */
Chris@4 196 len = min; /* starting code length */
Chris@4 197 next = *table; /* current table to fill in */
Chris@4 198 curr = root; /* current table index bits */
Chris@4 199 drop = 0; /* current bits to drop from code for index */
Chris@4 200 low = (unsigned)(-1); /* trigger new sub-table when len > root */
Chris@4 201 used = 1U << root; /* use root table entries */
Chris@4 202 mask = used - 1; /* mask for comparing low */
Chris@4 203
Chris@4 204 /* check available table space */
Chris@4 205 if ((type == LENS && used >= ENOUGH_LENS) ||
Chris@4 206 (type == DISTS && used >= ENOUGH_DISTS))
Chris@4 207 return 1;
Chris@4 208
Chris@4 209 /* process all codes and make table entries */
Chris@4 210 for (;;) {
Chris@4 211 /* create table entry */
Chris@4 212 this.bits = (unsigned char)(len - drop);
Chris@4 213 if ((int)(work[sym]) < end) {
Chris@4 214 this.op = (unsigned char)0;
Chris@4 215 this.val = work[sym];
Chris@4 216 }
Chris@4 217 else if ((int)(work[sym]) > end) {
Chris@4 218 this.op = (unsigned char)(extra[work[sym]]);
Chris@4 219 this.val = base[work[sym]];
Chris@4 220 }
Chris@4 221 else {
Chris@4 222 this.op = (unsigned char)(32 + 64); /* end of block */
Chris@4 223 this.val = 0;
Chris@4 224 }
Chris@4 225
Chris@4 226 /* replicate for those indices with low len bits equal to huff */
Chris@4 227 incr = 1U << (len - drop);
Chris@4 228 fill = 1U << curr;
Chris@4 229 do {
Chris@4 230 fill -= incr;
Chris@4 231 next[(huff >> drop) + fill] = this;
Chris@4 232 } while (fill != 0);
Chris@4 233
Chris@4 234 /* backwards increment the len-bit code huff */
Chris@4 235 incr = 1U << (len - 1);
Chris@4 236 while (huff & incr)
Chris@4 237 incr >>= 1;
Chris@4 238 if (incr != 0) {
Chris@4 239 huff &= incr - 1;
Chris@4 240 huff += incr;
Chris@4 241 }
Chris@4 242 else
Chris@4 243 huff = 0;
Chris@4 244
Chris@4 245 /* go to next symbol, update count, len */
Chris@4 246 sym++;
Chris@4 247 if (--(count[len]) == 0) {
Chris@4 248 if (len == max) break;
Chris@4 249 len = lens[work[sym]];
Chris@4 250 }
Chris@4 251
Chris@4 252 /* create new sub-table if needed */
Chris@4 253 if (len > root && (huff & mask) != low) {
Chris@4 254 /* if first time, transition to sub-tables */
Chris@4 255 if (drop == 0)
Chris@4 256 drop = root;
Chris@4 257
Chris@4 258 /* increment past last table */
Chris@4 259 next += 1U << curr;
Chris@4 260
Chris@4 261 /* determine length of next table */
Chris@4 262 curr = len - drop;
Chris@4 263 left = (int)(1 << curr);
Chris@4 264 while (curr + drop < max) {
Chris@4 265 left -= count[curr + drop];
Chris@4 266 if (left <= 0) break;
Chris@4 267 curr++;
Chris@4 268 left <<= 1;
Chris@4 269 }
Chris@4 270
Chris@4 271 /* check for enough space */
Chris@4 272 used += 1U << curr;
Chris@4 273 if ((type == LENS && used >= ENOUGH_LENS) ||
Chris@4 274 (type == DISTS && used >= ENOUGH_DISTS))
Chris@4 275 return 1;
Chris@4 276
Chris@4 277 /* point entry in root table to sub-table */
Chris@4 278 low = huff & mask;
Chris@4 279 (*table)[low].op = (unsigned char)curr;
Chris@4 280 (*table)[low].bits = (unsigned char)root;
Chris@4 281 (*table)[low].val = (unsigned short)(next - *table);
Chris@4 282 }
Chris@4 283 }
Chris@4 284
Chris@4 285 /*
Chris@4 286 Fill in rest of table for incomplete codes. This loop is similar to the
Chris@4 287 loop above in incrementing huff for table indices. It is assumed that
Chris@4 288 len is equal to curr + drop, so there is no loop needed to increment
Chris@4 289 through high index bits. When the current sub-table is filled, the loop
Chris@4 290 drops back to the root table to fill in any remaining entries there.
Chris@4 291 */
Chris@4 292 this.op = (unsigned char)64; /* invalid code marker */
Chris@4 293 this.bits = (unsigned char)(len - drop);
Chris@4 294 this.val = (unsigned short)0;
Chris@4 295 while (huff != 0) {
Chris@4 296 /* when done with sub-table, drop back to root table */
Chris@4 297 if (drop != 0 && (huff & mask) != low) {
Chris@4 298 drop = 0;
Chris@4 299 len = root;
Chris@4 300 next = *table;
Chris@4 301 curr = root;
Chris@4 302 this.bits = (unsigned char)len;
Chris@4 303 }
Chris@4 304
Chris@4 305 /* put invalid code marker in table */
Chris@4 306 next[huff >> drop] = this;
Chris@4 307
Chris@4 308 /* backwards increment the len-bit code huff */
Chris@4 309 incr = 1U << (len - 1);
Chris@4 310 while (huff & incr)
Chris@4 311 incr >>= 1;
Chris@4 312 if (incr != 0) {
Chris@4 313 huff &= incr - 1;
Chris@4 314 huff += incr;
Chris@4 315 }
Chris@4 316 else
Chris@4 317 huff = 0;
Chris@4 318 }
Chris@4 319
Chris@4 320 /* set return parameters */
Chris@4 321 *table += used;
Chris@4 322 *bits = root;
Chris@4 323 return 0;
Chris@4 324 }