annotate src/libmad-0.15.1b/synth.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents c7265573341e
children
rev   line source
Chris@0 1 /*
Chris@0 2 * libmad - MPEG audio decoder library
Chris@0 3 * Copyright (C) 2000-2004 Underbit Technologies, Inc.
Chris@0 4 *
Chris@0 5 * This program is free software; you can redistribute it and/or modify
Chris@0 6 * it under the terms of the GNU General Public License as published by
Chris@0 7 * the Free Software Foundation; either version 2 of the License, or
Chris@0 8 * (at your option) any later version.
Chris@0 9 *
Chris@0 10 * This program is distributed in the hope that it will be useful,
Chris@0 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@0 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@0 13 * GNU General Public License for more details.
Chris@0 14 *
Chris@0 15 * You should have received a copy of the GNU General Public License
Chris@0 16 * along with this program; if not, write to the Free Software
Chris@0 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Chris@0 18 *
Chris@0 19 * $Id: synth.c,v 1.25 2004/01/23 09:41:33 rob Exp $
Chris@0 20 */
Chris@0 21
Chris@0 22 # ifdef HAVE_CONFIG_H
Chris@0 23 # include "config.h"
Chris@0 24 # endif
Chris@0 25
Chris@0 26 # include "global.h"
Chris@0 27
Chris@0 28 # include "fixed.h"
Chris@0 29 # include "frame.h"
Chris@0 30 # include "synth.h"
Chris@0 31
Chris@0 32 /*
Chris@0 33 * NAME: synth->init()
Chris@0 34 * DESCRIPTION: initialize synth struct
Chris@0 35 */
Chris@0 36 void mad_synth_init(struct mad_synth *synth)
Chris@0 37 {
Chris@0 38 mad_synth_mute(synth);
Chris@0 39
Chris@0 40 synth->phase = 0;
Chris@0 41
Chris@0 42 synth->pcm.samplerate = 0;
Chris@0 43 synth->pcm.channels = 0;
Chris@0 44 synth->pcm.length = 0;
Chris@0 45 }
Chris@0 46
Chris@0 47 /*
Chris@0 48 * NAME: synth->mute()
Chris@0 49 * DESCRIPTION: zero all polyphase filterbank values, resetting synthesis
Chris@0 50 */
Chris@0 51 void mad_synth_mute(struct mad_synth *synth)
Chris@0 52 {
Chris@0 53 unsigned int ch, s, v;
Chris@0 54
Chris@0 55 for (ch = 0; ch < 2; ++ch) {
Chris@0 56 for (s = 0; s < 16; ++s) {
Chris@0 57 for (v = 0; v < 8; ++v) {
Chris@0 58 synth->filter[ch][0][0][s][v] = synth->filter[ch][0][1][s][v] =
Chris@0 59 synth->filter[ch][1][0][s][v] = synth->filter[ch][1][1][s][v] = 0;
Chris@0 60 }
Chris@0 61 }
Chris@0 62 }
Chris@0 63 }
Chris@0 64
Chris@0 65 /*
Chris@0 66 * An optional optimization called here the Subband Synthesis Optimization
Chris@0 67 * (SSO) improves the performance of subband synthesis at the expense of
Chris@0 68 * accuracy.
Chris@0 69 *
Chris@0 70 * The idea is to simplify 32x32->64-bit multiplication to 32x32->32 such
Chris@0 71 * that extra scaling and rounding are not necessary. This often allows the
Chris@0 72 * compiler to use faster 32-bit multiply-accumulate instructions instead of
Chris@0 73 * explicit 64-bit multiply, shift, and add instructions.
Chris@0 74 *
Chris@0 75 * SSO works like this: a full 32x32->64-bit multiply of two mad_fixed_t
Chris@0 76 * values requires the result to be right-shifted 28 bits to be properly
Chris@0 77 * scaled to the same fixed-point format. Right shifts can be applied at any
Chris@0 78 * time to either operand or to the result, so the optimization involves
Chris@0 79 * careful placement of these shifts to minimize the loss of accuracy.
Chris@0 80 *
Chris@0 81 * First, a 14-bit shift is applied with rounding at compile-time to the D[]
Chris@0 82 * table of coefficients for the subband synthesis window. This only loses 2
Chris@0 83 * bits of accuracy because the lower 12 bits are always zero. A second
Chris@0 84 * 12-bit shift occurs after the DCT calculation. This loses 12 bits of
Chris@0 85 * accuracy. Finally, a third 2-bit shift occurs just before the sample is
Chris@0 86 * saved in the PCM buffer. 14 + 12 + 2 == 28 bits.
Chris@0 87 */
Chris@0 88
Chris@0 89 /* FPM_DEFAULT without OPT_SSO will actually lose accuracy and performance */
Chris@0 90
Chris@0 91 # if defined(FPM_DEFAULT) && !defined(OPT_SSO)
Chris@0 92 # define OPT_SSO
Chris@0 93 # endif
Chris@0 94
Chris@0 95 /* second SSO shift, with rounding */
Chris@0 96
Chris@0 97 # if defined(OPT_SSO)
Chris@0 98 # define SHIFT(x) (((x) + (1L << 11)) >> 12)
Chris@0 99 # else
Chris@0 100 # define SHIFT(x) (x)
Chris@0 101 # endif
Chris@0 102
Chris@0 103 /* possible DCT speed optimization */
Chris@0 104
Chris@0 105 # if defined(OPT_SPEED) && defined(MAD_F_MLX)
Chris@0 106 # define OPT_DCTO
Chris@0 107 # define MUL(x, y) \
Chris@0 108 ({ mad_fixed64hi_t hi; \
Chris@0 109 mad_fixed64lo_t lo; \
Chris@0 110 MAD_F_MLX(hi, lo, (x), (y)); \
Chris@0 111 hi << (32 - MAD_F_SCALEBITS - 3); \
Chris@0 112 })
Chris@0 113 # else
Chris@0 114 # undef OPT_DCTO
Chris@0 115 # define MUL(x, y) mad_f_mul((x), (y))
Chris@0 116 # endif
Chris@0 117
Chris@0 118 /*
Chris@0 119 * NAME: dct32()
Chris@0 120 * DESCRIPTION: perform fast in[32]->out[32] DCT
Chris@0 121 */
Chris@0 122 static
Chris@0 123 void dct32(mad_fixed_t const in[32], unsigned int slot,
Chris@0 124 mad_fixed_t lo[16][8], mad_fixed_t hi[16][8])
Chris@0 125 {
Chris@0 126 mad_fixed_t t0, t1, t2, t3, t4, t5, t6, t7;
Chris@0 127 mad_fixed_t t8, t9, t10, t11, t12, t13, t14, t15;
Chris@0 128 mad_fixed_t t16, t17, t18, t19, t20, t21, t22, t23;
Chris@0 129 mad_fixed_t t24, t25, t26, t27, t28, t29, t30, t31;
Chris@0 130 mad_fixed_t t32, t33, t34, t35, t36, t37, t38, t39;
Chris@0 131 mad_fixed_t t40, t41, t42, t43, t44, t45, t46, t47;
Chris@0 132 mad_fixed_t t48, t49, t50, t51, t52, t53, t54, t55;
Chris@0 133 mad_fixed_t t56, t57, t58, t59, t60, t61, t62, t63;
Chris@0 134 mad_fixed_t t64, t65, t66, t67, t68, t69, t70, t71;
Chris@0 135 mad_fixed_t t72, t73, t74, t75, t76, t77, t78, t79;
Chris@0 136 mad_fixed_t t80, t81, t82, t83, t84, t85, t86, t87;
Chris@0 137 mad_fixed_t t88, t89, t90, t91, t92, t93, t94, t95;
Chris@0 138 mad_fixed_t t96, t97, t98, t99, t100, t101, t102, t103;
Chris@0 139 mad_fixed_t t104, t105, t106, t107, t108, t109, t110, t111;
Chris@0 140 mad_fixed_t t112, t113, t114, t115, t116, t117, t118, t119;
Chris@0 141 mad_fixed_t t120, t121, t122, t123, t124, t125, t126, t127;
Chris@0 142 mad_fixed_t t128, t129, t130, t131, t132, t133, t134, t135;
Chris@0 143 mad_fixed_t t136, t137, t138, t139, t140, t141, t142, t143;
Chris@0 144 mad_fixed_t t144, t145, t146, t147, t148, t149, t150, t151;
Chris@0 145 mad_fixed_t t152, t153, t154, t155, t156, t157, t158, t159;
Chris@0 146 mad_fixed_t t160, t161, t162, t163, t164, t165, t166, t167;
Chris@0 147 mad_fixed_t t168, t169, t170, t171, t172, t173, t174, t175;
Chris@0 148 mad_fixed_t t176;
Chris@0 149
Chris@0 150 /* costab[i] = cos(PI / (2 * 32) * i) */
Chris@0 151
Chris@0 152 # if defined(OPT_DCTO)
Chris@0 153 # define costab1 MAD_F(0x7fd8878e)
Chris@0 154 # define costab2 MAD_F(0x7f62368f)
Chris@0 155 # define costab3 MAD_F(0x7e9d55fc)
Chris@0 156 # define costab4 MAD_F(0x7d8a5f40)
Chris@0 157 # define costab5 MAD_F(0x7c29fbee)
Chris@0 158 # define costab6 MAD_F(0x7a7d055b)
Chris@0 159 # define costab7 MAD_F(0x78848414)
Chris@0 160 # define costab8 MAD_F(0x7641af3d)
Chris@0 161 # define costab9 MAD_F(0x73b5ebd1)
Chris@0 162 # define costab10 MAD_F(0x70e2cbc6)
Chris@0 163 # define costab11 MAD_F(0x6dca0d14)
Chris@0 164 # define costab12 MAD_F(0x6a6d98a4)
Chris@0 165 # define costab13 MAD_F(0x66cf8120)
Chris@0 166 # define costab14 MAD_F(0x62f201ac)
Chris@0 167 # define costab15 MAD_F(0x5ed77c8a)
Chris@0 168 # define costab16 MAD_F(0x5a82799a)
Chris@0 169 # define costab17 MAD_F(0x55f5a4d2)
Chris@0 170 # define costab18 MAD_F(0x5133cc94)
Chris@0 171 # define costab19 MAD_F(0x4c3fdff4)
Chris@0 172 # define costab20 MAD_F(0x471cece7)
Chris@0 173 # define costab21 MAD_F(0x41ce1e65)
Chris@0 174 # define costab22 MAD_F(0x3c56ba70)
Chris@0 175 # define costab23 MAD_F(0x36ba2014)
Chris@0 176 # define costab24 MAD_F(0x30fbc54d)
Chris@0 177 # define costab25 MAD_F(0x2b1f34eb)
Chris@0 178 # define costab26 MAD_F(0x25280c5e)
Chris@0 179 # define costab27 MAD_F(0x1f19f97b)
Chris@0 180 # define costab28 MAD_F(0x18f8b83c)
Chris@0 181 # define costab29 MAD_F(0x12c8106f)
Chris@0 182 # define costab30 MAD_F(0x0c8bd35e)
Chris@0 183 # define costab31 MAD_F(0x0647d97c)
Chris@0 184 # else
Chris@0 185 # define costab1 MAD_F(0x0ffb10f2) /* 0.998795456 */
Chris@0 186 # define costab2 MAD_F(0x0fec46d2) /* 0.995184727 */
Chris@0 187 # define costab3 MAD_F(0x0fd3aac0) /* 0.989176510 */
Chris@0 188 # define costab4 MAD_F(0x0fb14be8) /* 0.980785280 */
Chris@0 189 # define costab5 MAD_F(0x0f853f7e) /* 0.970031253 */
Chris@0 190 # define costab6 MAD_F(0x0f4fa0ab) /* 0.956940336 */
Chris@0 191 # define costab7 MAD_F(0x0f109082) /* 0.941544065 */
Chris@0 192 # define costab8 MAD_F(0x0ec835e8) /* 0.923879533 */
Chris@0 193 # define costab9 MAD_F(0x0e76bd7a) /* 0.903989293 */
Chris@0 194 # define costab10 MAD_F(0x0e1c5979) /* 0.881921264 */
Chris@0 195 # define costab11 MAD_F(0x0db941a3) /* 0.857728610 */
Chris@0 196 # define costab12 MAD_F(0x0d4db315) /* 0.831469612 */
Chris@0 197 # define costab13 MAD_F(0x0cd9f024) /* 0.803207531 */
Chris@0 198 # define costab14 MAD_F(0x0c5e4036) /* 0.773010453 */
Chris@0 199 # define costab15 MAD_F(0x0bdaef91) /* 0.740951125 */
Chris@0 200 # define costab16 MAD_F(0x0b504f33) /* 0.707106781 */
Chris@0 201 # define costab17 MAD_F(0x0abeb49a) /* 0.671558955 */
Chris@0 202 # define costab18 MAD_F(0x0a267993) /* 0.634393284 */
Chris@0 203 # define costab19 MAD_F(0x0987fbfe) /* 0.595699304 */
Chris@0 204 # define costab20 MAD_F(0x08e39d9d) /* 0.555570233 */
Chris@0 205 # define costab21 MAD_F(0x0839c3cd) /* 0.514102744 */
Chris@0 206 # define costab22 MAD_F(0x078ad74e) /* 0.471396737 */
Chris@0 207 # define costab23 MAD_F(0x06d74402) /* 0.427555093 */
Chris@0 208 # define costab24 MAD_F(0x061f78aa) /* 0.382683432 */
Chris@0 209 # define costab25 MAD_F(0x0563e69d) /* 0.336889853 */
Chris@0 210 # define costab26 MAD_F(0x04a5018c) /* 0.290284677 */
Chris@0 211 # define costab27 MAD_F(0x03e33f2f) /* 0.242980180 */
Chris@0 212 # define costab28 MAD_F(0x031f1708) /* 0.195090322 */
Chris@0 213 # define costab29 MAD_F(0x0259020e) /* 0.146730474 */
Chris@0 214 # define costab30 MAD_F(0x01917a6c) /* 0.098017140 */
Chris@0 215 # define costab31 MAD_F(0x00c8fb30) /* 0.049067674 */
Chris@0 216 # endif
Chris@0 217
Chris@0 218 t0 = in[0] + in[31]; t16 = MUL(in[0] - in[31], costab1);
Chris@0 219 t1 = in[15] + in[16]; t17 = MUL(in[15] - in[16], costab31);
Chris@0 220
Chris@0 221 t41 = t16 + t17;
Chris@0 222 t59 = MUL(t16 - t17, costab2);
Chris@0 223 t33 = t0 + t1;
Chris@0 224 t50 = MUL(t0 - t1, costab2);
Chris@0 225
Chris@0 226 t2 = in[7] + in[24]; t18 = MUL(in[7] - in[24], costab15);
Chris@0 227 t3 = in[8] + in[23]; t19 = MUL(in[8] - in[23], costab17);
Chris@0 228
Chris@0 229 t42 = t18 + t19;
Chris@0 230 t60 = MUL(t18 - t19, costab30);
Chris@0 231 t34 = t2 + t3;
Chris@0 232 t51 = MUL(t2 - t3, costab30);
Chris@0 233
Chris@0 234 t4 = in[3] + in[28]; t20 = MUL(in[3] - in[28], costab7);
Chris@0 235 t5 = in[12] + in[19]; t21 = MUL(in[12] - in[19], costab25);
Chris@0 236
Chris@0 237 t43 = t20 + t21;
Chris@0 238 t61 = MUL(t20 - t21, costab14);
Chris@0 239 t35 = t4 + t5;
Chris@0 240 t52 = MUL(t4 - t5, costab14);
Chris@0 241
Chris@0 242 t6 = in[4] + in[27]; t22 = MUL(in[4] - in[27], costab9);
Chris@0 243 t7 = in[11] + in[20]; t23 = MUL(in[11] - in[20], costab23);
Chris@0 244
Chris@0 245 t44 = t22 + t23;
Chris@0 246 t62 = MUL(t22 - t23, costab18);
Chris@0 247 t36 = t6 + t7;
Chris@0 248 t53 = MUL(t6 - t7, costab18);
Chris@0 249
Chris@0 250 t8 = in[1] + in[30]; t24 = MUL(in[1] - in[30], costab3);
Chris@0 251 t9 = in[14] + in[17]; t25 = MUL(in[14] - in[17], costab29);
Chris@0 252
Chris@0 253 t45 = t24 + t25;
Chris@0 254 t63 = MUL(t24 - t25, costab6);
Chris@0 255 t37 = t8 + t9;
Chris@0 256 t54 = MUL(t8 - t9, costab6);
Chris@0 257
Chris@0 258 t10 = in[6] + in[25]; t26 = MUL(in[6] - in[25], costab13);
Chris@0 259 t11 = in[9] + in[22]; t27 = MUL(in[9] - in[22], costab19);
Chris@0 260
Chris@0 261 t46 = t26 + t27;
Chris@0 262 t64 = MUL(t26 - t27, costab26);
Chris@0 263 t38 = t10 + t11;
Chris@0 264 t55 = MUL(t10 - t11, costab26);
Chris@0 265
Chris@0 266 t12 = in[2] + in[29]; t28 = MUL(in[2] - in[29], costab5);
Chris@0 267 t13 = in[13] + in[18]; t29 = MUL(in[13] - in[18], costab27);
Chris@0 268
Chris@0 269 t47 = t28 + t29;
Chris@0 270 t65 = MUL(t28 - t29, costab10);
Chris@0 271 t39 = t12 + t13;
Chris@0 272 t56 = MUL(t12 - t13, costab10);
Chris@0 273
Chris@0 274 t14 = in[5] + in[26]; t30 = MUL(in[5] - in[26], costab11);
Chris@0 275 t15 = in[10] + in[21]; t31 = MUL(in[10] - in[21], costab21);
Chris@0 276
Chris@0 277 t48 = t30 + t31;
Chris@0 278 t66 = MUL(t30 - t31, costab22);
Chris@0 279 t40 = t14 + t15;
Chris@0 280 t57 = MUL(t14 - t15, costab22);
Chris@0 281
Chris@0 282 t69 = t33 + t34; t89 = MUL(t33 - t34, costab4);
Chris@0 283 t70 = t35 + t36; t90 = MUL(t35 - t36, costab28);
Chris@0 284 t71 = t37 + t38; t91 = MUL(t37 - t38, costab12);
Chris@0 285 t72 = t39 + t40; t92 = MUL(t39 - t40, costab20);
Chris@0 286 t73 = t41 + t42; t94 = MUL(t41 - t42, costab4);
Chris@0 287 t74 = t43 + t44; t95 = MUL(t43 - t44, costab28);
Chris@0 288 t75 = t45 + t46; t96 = MUL(t45 - t46, costab12);
Chris@0 289 t76 = t47 + t48; t97 = MUL(t47 - t48, costab20);
Chris@0 290
Chris@0 291 t78 = t50 + t51; t100 = MUL(t50 - t51, costab4);
Chris@0 292 t79 = t52 + t53; t101 = MUL(t52 - t53, costab28);
Chris@0 293 t80 = t54 + t55; t102 = MUL(t54 - t55, costab12);
Chris@0 294 t81 = t56 + t57; t103 = MUL(t56 - t57, costab20);
Chris@0 295
Chris@0 296 t83 = t59 + t60; t106 = MUL(t59 - t60, costab4);
Chris@0 297 t84 = t61 + t62; t107 = MUL(t61 - t62, costab28);
Chris@0 298 t85 = t63 + t64; t108 = MUL(t63 - t64, costab12);
Chris@0 299 t86 = t65 + t66; t109 = MUL(t65 - t66, costab20);
Chris@0 300
Chris@0 301 t113 = t69 + t70;
Chris@0 302 t114 = t71 + t72;
Chris@0 303
Chris@0 304 /* 0 */ hi[15][slot] = SHIFT(t113 + t114);
Chris@0 305 /* 16 */ lo[ 0][slot] = SHIFT(MUL(t113 - t114, costab16));
Chris@0 306
Chris@0 307 t115 = t73 + t74;
Chris@0 308 t116 = t75 + t76;
Chris@0 309
Chris@0 310 t32 = t115 + t116;
Chris@0 311
Chris@0 312 /* 1 */ hi[14][slot] = SHIFT(t32);
Chris@0 313
Chris@0 314 t118 = t78 + t79;
Chris@0 315 t119 = t80 + t81;
Chris@0 316
Chris@0 317 t58 = t118 + t119;
Chris@0 318
Chris@0 319 /* 2 */ hi[13][slot] = SHIFT(t58);
Chris@0 320
Chris@0 321 t121 = t83 + t84;
Chris@0 322 t122 = t85 + t86;
Chris@0 323
Chris@0 324 t67 = t121 + t122;
Chris@0 325
Chris@0 326 t49 = (t67 * 2) - t32;
Chris@0 327
Chris@0 328 /* 3 */ hi[12][slot] = SHIFT(t49);
Chris@0 329
Chris@0 330 t125 = t89 + t90;
Chris@0 331 t126 = t91 + t92;
Chris@0 332
Chris@0 333 t93 = t125 + t126;
Chris@0 334
Chris@0 335 /* 4 */ hi[11][slot] = SHIFT(t93);
Chris@0 336
Chris@0 337 t128 = t94 + t95;
Chris@0 338 t129 = t96 + t97;
Chris@0 339
Chris@0 340 t98 = t128 + t129;
Chris@0 341
Chris@0 342 t68 = (t98 * 2) - t49;
Chris@0 343
Chris@0 344 /* 5 */ hi[10][slot] = SHIFT(t68);
Chris@0 345
Chris@0 346 t132 = t100 + t101;
Chris@0 347 t133 = t102 + t103;
Chris@0 348
Chris@0 349 t104 = t132 + t133;
Chris@0 350
Chris@0 351 t82 = (t104 * 2) - t58;
Chris@0 352
Chris@0 353 /* 6 */ hi[ 9][slot] = SHIFT(t82);
Chris@0 354
Chris@0 355 t136 = t106 + t107;
Chris@0 356 t137 = t108 + t109;
Chris@0 357
Chris@0 358 t110 = t136 + t137;
Chris@0 359
Chris@0 360 t87 = (t110 * 2) - t67;
Chris@0 361
Chris@0 362 t77 = (t87 * 2) - t68;
Chris@0 363
Chris@0 364 /* 7 */ hi[ 8][slot] = SHIFT(t77);
Chris@0 365
Chris@0 366 t141 = MUL(t69 - t70, costab8);
Chris@0 367 t142 = MUL(t71 - t72, costab24);
Chris@0 368 t143 = t141 + t142;
Chris@0 369
Chris@0 370 /* 8 */ hi[ 7][slot] = SHIFT(t143);
Chris@0 371 /* 24 */ lo[ 8][slot] =
Chris@0 372 SHIFT((MUL(t141 - t142, costab16) * 2) - t143);
Chris@0 373
Chris@0 374 t144 = MUL(t73 - t74, costab8);
Chris@0 375 t145 = MUL(t75 - t76, costab24);
Chris@0 376 t146 = t144 + t145;
Chris@0 377
Chris@0 378 t88 = (t146 * 2) - t77;
Chris@0 379
Chris@0 380 /* 9 */ hi[ 6][slot] = SHIFT(t88);
Chris@0 381
Chris@0 382 t148 = MUL(t78 - t79, costab8);
Chris@0 383 t149 = MUL(t80 - t81, costab24);
Chris@0 384 t150 = t148 + t149;
Chris@0 385
Chris@0 386 t105 = (t150 * 2) - t82;
Chris@0 387
Chris@0 388 /* 10 */ hi[ 5][slot] = SHIFT(t105);
Chris@0 389
Chris@0 390 t152 = MUL(t83 - t84, costab8);
Chris@0 391 t153 = MUL(t85 - t86, costab24);
Chris@0 392 t154 = t152 + t153;
Chris@0 393
Chris@0 394 t111 = (t154 * 2) - t87;
Chris@0 395
Chris@0 396 t99 = (t111 * 2) - t88;
Chris@0 397
Chris@0 398 /* 11 */ hi[ 4][slot] = SHIFT(t99);
Chris@0 399
Chris@0 400 t157 = MUL(t89 - t90, costab8);
Chris@0 401 t158 = MUL(t91 - t92, costab24);
Chris@0 402 t159 = t157 + t158;
Chris@0 403
Chris@0 404 t127 = (t159 * 2) - t93;
Chris@0 405
Chris@0 406 /* 12 */ hi[ 3][slot] = SHIFT(t127);
Chris@0 407
Chris@0 408 t160 = (MUL(t125 - t126, costab16) * 2) - t127;
Chris@0 409
Chris@0 410 /* 20 */ lo[ 4][slot] = SHIFT(t160);
Chris@0 411 /* 28 */ lo[12][slot] =
Chris@0 412 SHIFT((((MUL(t157 - t158, costab16) * 2) - t159) * 2) - t160);
Chris@0 413
Chris@0 414 t161 = MUL(t94 - t95, costab8);
Chris@0 415 t162 = MUL(t96 - t97, costab24);
Chris@0 416 t163 = t161 + t162;
Chris@0 417
Chris@0 418 t130 = (t163 * 2) - t98;
Chris@0 419
Chris@0 420 t112 = (t130 * 2) - t99;
Chris@0 421
Chris@0 422 /* 13 */ hi[ 2][slot] = SHIFT(t112);
Chris@0 423
Chris@0 424 t164 = (MUL(t128 - t129, costab16) * 2) - t130;
Chris@0 425
Chris@0 426 t166 = MUL(t100 - t101, costab8);
Chris@0 427 t167 = MUL(t102 - t103, costab24);
Chris@0 428 t168 = t166 + t167;
Chris@0 429
Chris@0 430 t134 = (t168 * 2) - t104;
Chris@0 431
Chris@0 432 t120 = (t134 * 2) - t105;
Chris@0 433
Chris@0 434 /* 14 */ hi[ 1][slot] = SHIFT(t120);
Chris@0 435
Chris@0 436 t135 = (MUL(t118 - t119, costab16) * 2) - t120;
Chris@0 437
Chris@0 438 /* 18 */ lo[ 2][slot] = SHIFT(t135);
Chris@0 439
Chris@0 440 t169 = (MUL(t132 - t133, costab16) * 2) - t134;
Chris@0 441
Chris@0 442 t151 = (t169 * 2) - t135;
Chris@0 443
Chris@0 444 /* 22 */ lo[ 6][slot] = SHIFT(t151);
Chris@0 445
Chris@0 446 t170 = (((MUL(t148 - t149, costab16) * 2) - t150) * 2) - t151;
Chris@0 447
Chris@0 448 /* 26 */ lo[10][slot] = SHIFT(t170);
Chris@0 449 /* 30 */ lo[14][slot] =
Chris@0 450 SHIFT((((((MUL(t166 - t167, costab16) * 2) -
Chris@0 451 t168) * 2) - t169) * 2) - t170);
Chris@0 452
Chris@0 453 t171 = MUL(t106 - t107, costab8);
Chris@0 454 t172 = MUL(t108 - t109, costab24);
Chris@0 455 t173 = t171 + t172;
Chris@0 456
Chris@0 457 t138 = (t173 * 2) - t110;
Chris@0 458
Chris@0 459 t123 = (t138 * 2) - t111;
Chris@0 460
Chris@0 461 t139 = (MUL(t121 - t122, costab16) * 2) - t123;
Chris@0 462
Chris@0 463 t117 = (t123 * 2) - t112;
Chris@0 464
Chris@0 465 /* 15 */ hi[ 0][slot] = SHIFT(t117);
Chris@0 466
Chris@0 467 t124 = (MUL(t115 - t116, costab16) * 2) - t117;
Chris@0 468
Chris@0 469 /* 17 */ lo[ 1][slot] = SHIFT(t124);
Chris@0 470
Chris@0 471 t131 = (t139 * 2) - t124;
Chris@0 472
Chris@0 473 /* 19 */ lo[ 3][slot] = SHIFT(t131);
Chris@0 474
Chris@0 475 t140 = (t164 * 2) - t131;
Chris@0 476
Chris@0 477 /* 21 */ lo[ 5][slot] = SHIFT(t140);
Chris@0 478
Chris@0 479 t174 = (MUL(t136 - t137, costab16) * 2) - t138;
Chris@0 480
Chris@0 481 t155 = (t174 * 2) - t139;
Chris@0 482
Chris@0 483 t147 = (t155 * 2) - t140;
Chris@0 484
Chris@0 485 /* 23 */ lo[ 7][slot] = SHIFT(t147);
Chris@0 486
Chris@0 487 t156 = (((MUL(t144 - t145, costab16) * 2) - t146) * 2) - t147;
Chris@0 488
Chris@0 489 /* 25 */ lo[ 9][slot] = SHIFT(t156);
Chris@0 490
Chris@0 491 t175 = (((MUL(t152 - t153, costab16) * 2) - t154) * 2) - t155;
Chris@0 492
Chris@0 493 t165 = (t175 * 2) - t156;
Chris@0 494
Chris@0 495 /* 27 */ lo[11][slot] = SHIFT(t165);
Chris@0 496
Chris@0 497 t176 = (((((MUL(t161 - t162, costab16) * 2) -
Chris@0 498 t163) * 2) - t164) * 2) - t165;
Chris@0 499
Chris@0 500 /* 29 */ lo[13][slot] = SHIFT(t176);
Chris@0 501 /* 31 */ lo[15][slot] =
Chris@0 502 SHIFT((((((((MUL(t171 - t172, costab16) * 2) -
Chris@0 503 t173) * 2) - t174) * 2) - t175) * 2) - t176);
Chris@0 504
Chris@0 505 /*
Chris@0 506 * Totals:
Chris@0 507 * 80 multiplies
Chris@0 508 * 80 additions
Chris@0 509 * 119 subtractions
Chris@0 510 * 49 shifts (not counting SSO)
Chris@0 511 */
Chris@0 512 }
Chris@0 513
Chris@0 514 # undef MUL
Chris@0 515 # undef SHIFT
Chris@0 516
Chris@0 517 /* third SSO shift and/or D[] optimization preshift */
Chris@0 518
Chris@0 519 # if defined(OPT_SSO)
Chris@0 520 # if MAD_F_FRACBITS != 28
Chris@0 521 # error "MAD_F_FRACBITS must be 28 to use OPT_SSO"
Chris@0 522 # endif
Chris@0 523 # define ML0(hi, lo, x, y) ((lo) = (x) * (y))
Chris@0 524 # define MLA(hi, lo, x, y) ((lo) += (x) * (y))
Chris@0 525 # define MLN(hi, lo) ((lo) = -(lo))
Chris@0 526 # define MLZ(hi, lo) ((void) (hi), (mad_fixed_t) (lo))
Chris@0 527 # define SHIFT(x) ((x) >> 2)
Chris@0 528 # define PRESHIFT(x) ((MAD_F(x) + (1L << 13)) >> 14)
Chris@0 529 # else
Chris@0 530 # define ML0(hi, lo, x, y) MAD_F_ML0((hi), (lo), (x), (y))
Chris@0 531 # define MLA(hi, lo, x, y) MAD_F_MLA((hi), (lo), (x), (y))
Chris@0 532 # define MLN(hi, lo) MAD_F_MLN((hi), (lo))
Chris@0 533 # define MLZ(hi, lo) MAD_F_MLZ((hi), (lo))
Chris@0 534 # define SHIFT(x) (x)
Chris@0 535 # if defined(MAD_F_SCALEBITS)
Chris@0 536 # undef MAD_F_SCALEBITS
Chris@0 537 # define MAD_F_SCALEBITS (MAD_F_FRACBITS - 12)
Chris@0 538 # define PRESHIFT(x) (MAD_F(x) >> 12)
Chris@0 539 # else
Chris@0 540 # define PRESHIFT(x) MAD_F(x)
Chris@0 541 # endif
Chris@0 542 # endif
Chris@0 543
Chris@0 544 static
Chris@0 545 mad_fixed_t const D[17][32] = {
Chris@0 546 # include "D.dat"
Chris@0 547 };
Chris@0 548
Chris@0 549 # if defined(ASO_SYNTH)
Chris@0 550 void synth_full(struct mad_synth *, struct mad_frame const *,
Chris@0 551 unsigned int, unsigned int);
Chris@0 552 # else
Chris@0 553 /*
Chris@0 554 * NAME: synth->full()
Chris@0 555 * DESCRIPTION: perform full frequency PCM synthesis
Chris@0 556 */
Chris@0 557 static
Chris@0 558 void synth_full(struct mad_synth *synth, struct mad_frame const *frame,
Chris@0 559 unsigned int nch, unsigned int ns)
Chris@0 560 {
Chris@0 561 unsigned int phase, ch, s, sb, pe, po;
Chris@0 562 mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8];
Chris@0 563 mad_fixed_t const (*sbsample)[36][32];
Chris@0 564 register mad_fixed_t (*fe)[8], (*fx)[8], (*fo)[8];
Chris@0 565 register mad_fixed_t const (*Dptr)[32], *ptr;
Chris@0 566 register mad_fixed64hi_t hi;
Chris@0 567 register mad_fixed64lo_t lo;
Chris@0 568
Chris@0 569 for (ch = 0; ch < nch; ++ch) {
Chris@0 570 sbsample = &frame->sbsample[ch];
Chris@0 571 filter = &synth->filter[ch];
Chris@0 572 phase = synth->phase;
Chris@0 573 pcm1 = synth->pcm.samples[ch];
Chris@0 574
Chris@0 575 for (s = 0; s < ns; ++s) {
Chris@0 576 dct32((*sbsample)[s], phase >> 1,
Chris@0 577 (*filter)[0][phase & 1], (*filter)[1][phase & 1]);
Chris@0 578
Chris@0 579 pe = phase & ~1;
Chris@0 580 po = ((phase - 1) & 0xf) | 1;
Chris@0 581
Chris@0 582 /* calculate 32 samples */
Chris@0 583
Chris@0 584 fe = &(*filter)[0][ phase & 1][0];
Chris@0 585 fx = &(*filter)[0][~phase & 1][0];
Chris@0 586 fo = &(*filter)[1][~phase & 1][0];
Chris@0 587
Chris@0 588 Dptr = &D[0];
Chris@0 589
Chris@0 590 ptr = *Dptr + po;
Chris@0 591 ML0(hi, lo, (*fx)[0], ptr[ 0]);
Chris@0 592 MLA(hi, lo, (*fx)[1], ptr[14]);
Chris@0 593 MLA(hi, lo, (*fx)[2], ptr[12]);
Chris@0 594 MLA(hi, lo, (*fx)[3], ptr[10]);
Chris@0 595 MLA(hi, lo, (*fx)[4], ptr[ 8]);
Chris@0 596 MLA(hi, lo, (*fx)[5], ptr[ 6]);
Chris@0 597 MLA(hi, lo, (*fx)[6], ptr[ 4]);
Chris@0 598 MLA(hi, lo, (*fx)[7], ptr[ 2]);
Chris@0 599 MLN(hi, lo);
Chris@0 600
Chris@0 601 ptr = *Dptr + pe;
Chris@0 602 MLA(hi, lo, (*fe)[0], ptr[ 0]);
Chris@0 603 MLA(hi, lo, (*fe)[1], ptr[14]);
Chris@0 604 MLA(hi, lo, (*fe)[2], ptr[12]);
Chris@0 605 MLA(hi, lo, (*fe)[3], ptr[10]);
Chris@0 606 MLA(hi, lo, (*fe)[4], ptr[ 8]);
Chris@0 607 MLA(hi, lo, (*fe)[5], ptr[ 6]);
Chris@0 608 MLA(hi, lo, (*fe)[6], ptr[ 4]);
Chris@0 609 MLA(hi, lo, (*fe)[7], ptr[ 2]);
Chris@0 610
Chris@0 611 *pcm1++ = SHIFT(MLZ(hi, lo));
Chris@0 612
Chris@0 613 pcm2 = pcm1 + 30;
Chris@0 614
Chris@0 615 for (sb = 1; sb < 16; ++sb) {
Chris@0 616 ++fe;
Chris@0 617 ++Dptr;
Chris@0 618
Chris@0 619 /* D[32 - sb][i] == -D[sb][31 - i] */
Chris@0 620
Chris@0 621 ptr = *Dptr + po;
Chris@0 622 ML0(hi, lo, (*fo)[0], ptr[ 0]);
Chris@0 623 MLA(hi, lo, (*fo)[1], ptr[14]);
Chris@0 624 MLA(hi, lo, (*fo)[2], ptr[12]);
Chris@0 625 MLA(hi, lo, (*fo)[3], ptr[10]);
Chris@0 626 MLA(hi, lo, (*fo)[4], ptr[ 8]);
Chris@0 627 MLA(hi, lo, (*fo)[5], ptr[ 6]);
Chris@0 628 MLA(hi, lo, (*fo)[6], ptr[ 4]);
Chris@0 629 MLA(hi, lo, (*fo)[7], ptr[ 2]);
Chris@0 630 MLN(hi, lo);
Chris@0 631
Chris@0 632 ptr = *Dptr + pe;
Chris@0 633 MLA(hi, lo, (*fe)[7], ptr[ 2]);
Chris@0 634 MLA(hi, lo, (*fe)[6], ptr[ 4]);
Chris@0 635 MLA(hi, lo, (*fe)[5], ptr[ 6]);
Chris@0 636 MLA(hi, lo, (*fe)[4], ptr[ 8]);
Chris@0 637 MLA(hi, lo, (*fe)[3], ptr[10]);
Chris@0 638 MLA(hi, lo, (*fe)[2], ptr[12]);
Chris@0 639 MLA(hi, lo, (*fe)[1], ptr[14]);
Chris@0 640 MLA(hi, lo, (*fe)[0], ptr[ 0]);
Chris@0 641
Chris@0 642 *pcm1++ = SHIFT(MLZ(hi, lo));
Chris@0 643
Chris@0 644 ptr = *Dptr - pe;
Chris@0 645 ML0(hi, lo, (*fe)[0], ptr[31 - 16]);
Chris@0 646 MLA(hi, lo, (*fe)[1], ptr[31 - 14]);
Chris@0 647 MLA(hi, lo, (*fe)[2], ptr[31 - 12]);
Chris@0 648 MLA(hi, lo, (*fe)[3], ptr[31 - 10]);
Chris@0 649 MLA(hi, lo, (*fe)[4], ptr[31 - 8]);
Chris@0 650 MLA(hi, lo, (*fe)[5], ptr[31 - 6]);
Chris@0 651 MLA(hi, lo, (*fe)[6], ptr[31 - 4]);
Chris@0 652 MLA(hi, lo, (*fe)[7], ptr[31 - 2]);
Chris@0 653
Chris@0 654 ptr = *Dptr - po;
Chris@0 655 MLA(hi, lo, (*fo)[7], ptr[31 - 2]);
Chris@0 656 MLA(hi, lo, (*fo)[6], ptr[31 - 4]);
Chris@0 657 MLA(hi, lo, (*fo)[5], ptr[31 - 6]);
Chris@0 658 MLA(hi, lo, (*fo)[4], ptr[31 - 8]);
Chris@0 659 MLA(hi, lo, (*fo)[3], ptr[31 - 10]);
Chris@0 660 MLA(hi, lo, (*fo)[2], ptr[31 - 12]);
Chris@0 661 MLA(hi, lo, (*fo)[1], ptr[31 - 14]);
Chris@0 662 MLA(hi, lo, (*fo)[0], ptr[31 - 16]);
Chris@0 663
Chris@0 664 *pcm2-- = SHIFT(MLZ(hi, lo));
Chris@0 665
Chris@0 666 ++fo;
Chris@0 667 }
Chris@0 668
Chris@0 669 ++Dptr;
Chris@0 670
Chris@0 671 ptr = *Dptr + po;
Chris@0 672 ML0(hi, lo, (*fo)[0], ptr[ 0]);
Chris@0 673 MLA(hi, lo, (*fo)[1], ptr[14]);
Chris@0 674 MLA(hi, lo, (*fo)[2], ptr[12]);
Chris@0 675 MLA(hi, lo, (*fo)[3], ptr[10]);
Chris@0 676 MLA(hi, lo, (*fo)[4], ptr[ 8]);
Chris@0 677 MLA(hi, lo, (*fo)[5], ptr[ 6]);
Chris@0 678 MLA(hi, lo, (*fo)[6], ptr[ 4]);
Chris@0 679 MLA(hi, lo, (*fo)[7], ptr[ 2]);
Chris@0 680
Chris@0 681 *pcm1 = SHIFT(-MLZ(hi, lo));
Chris@0 682 pcm1 += 16;
Chris@0 683
Chris@0 684 phase = (phase + 1) % 16;
Chris@0 685 }
Chris@0 686 }
Chris@0 687 }
Chris@0 688 # endif
Chris@0 689
Chris@0 690 /*
Chris@0 691 * NAME: synth->half()
Chris@0 692 * DESCRIPTION: perform half frequency PCM synthesis
Chris@0 693 */
Chris@0 694 static
Chris@0 695 void synth_half(struct mad_synth *synth, struct mad_frame const *frame,
Chris@0 696 unsigned int nch, unsigned int ns)
Chris@0 697 {
Chris@0 698 unsigned int phase, ch, s, sb, pe, po;
Chris@0 699 mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8];
Chris@0 700 mad_fixed_t const (*sbsample)[36][32];
Chris@0 701 register mad_fixed_t (*fe)[8], (*fx)[8], (*fo)[8];
Chris@0 702 register mad_fixed_t const (*Dptr)[32], *ptr;
Chris@0 703 register mad_fixed64hi_t hi;
Chris@0 704 register mad_fixed64lo_t lo;
Chris@0 705
Chris@0 706 for (ch = 0; ch < nch; ++ch) {
Chris@0 707 sbsample = &frame->sbsample[ch];
Chris@0 708 filter = &synth->filter[ch];
Chris@0 709 phase = synth->phase;
Chris@0 710 pcm1 = synth->pcm.samples[ch];
Chris@0 711
Chris@0 712 for (s = 0; s < ns; ++s) {
Chris@0 713 dct32((*sbsample)[s], phase >> 1,
Chris@0 714 (*filter)[0][phase & 1], (*filter)[1][phase & 1]);
Chris@0 715
Chris@0 716 pe = phase & ~1;
Chris@0 717 po = ((phase - 1) & 0xf) | 1;
Chris@0 718
Chris@0 719 /* calculate 16 samples */
Chris@0 720
Chris@0 721 fe = &(*filter)[0][ phase & 1][0];
Chris@0 722 fx = &(*filter)[0][~phase & 1][0];
Chris@0 723 fo = &(*filter)[1][~phase & 1][0];
Chris@0 724
Chris@0 725 Dptr = &D[0];
Chris@0 726
Chris@0 727 ptr = *Dptr + po;
Chris@0 728 ML0(hi, lo, (*fx)[0], ptr[ 0]);
Chris@0 729 MLA(hi, lo, (*fx)[1], ptr[14]);
Chris@0 730 MLA(hi, lo, (*fx)[2], ptr[12]);
Chris@0 731 MLA(hi, lo, (*fx)[3], ptr[10]);
Chris@0 732 MLA(hi, lo, (*fx)[4], ptr[ 8]);
Chris@0 733 MLA(hi, lo, (*fx)[5], ptr[ 6]);
Chris@0 734 MLA(hi, lo, (*fx)[6], ptr[ 4]);
Chris@0 735 MLA(hi, lo, (*fx)[7], ptr[ 2]);
Chris@0 736 MLN(hi, lo);
Chris@0 737
Chris@0 738 ptr = *Dptr + pe;
Chris@0 739 MLA(hi, lo, (*fe)[0], ptr[ 0]);
Chris@0 740 MLA(hi, lo, (*fe)[1], ptr[14]);
Chris@0 741 MLA(hi, lo, (*fe)[2], ptr[12]);
Chris@0 742 MLA(hi, lo, (*fe)[3], ptr[10]);
Chris@0 743 MLA(hi, lo, (*fe)[4], ptr[ 8]);
Chris@0 744 MLA(hi, lo, (*fe)[5], ptr[ 6]);
Chris@0 745 MLA(hi, lo, (*fe)[6], ptr[ 4]);
Chris@0 746 MLA(hi, lo, (*fe)[7], ptr[ 2]);
Chris@0 747
Chris@0 748 *pcm1++ = SHIFT(MLZ(hi, lo));
Chris@0 749
Chris@0 750 pcm2 = pcm1 + 14;
Chris@0 751
Chris@0 752 for (sb = 1; sb < 16; ++sb) {
Chris@0 753 ++fe;
Chris@0 754 ++Dptr;
Chris@0 755
Chris@0 756 /* D[32 - sb][i] == -D[sb][31 - i] */
Chris@0 757
Chris@0 758 if (!(sb & 1)) {
Chris@0 759 ptr = *Dptr + po;
Chris@0 760 ML0(hi, lo, (*fo)[0], ptr[ 0]);
Chris@0 761 MLA(hi, lo, (*fo)[1], ptr[14]);
Chris@0 762 MLA(hi, lo, (*fo)[2], ptr[12]);
Chris@0 763 MLA(hi, lo, (*fo)[3], ptr[10]);
Chris@0 764 MLA(hi, lo, (*fo)[4], ptr[ 8]);
Chris@0 765 MLA(hi, lo, (*fo)[5], ptr[ 6]);
Chris@0 766 MLA(hi, lo, (*fo)[6], ptr[ 4]);
Chris@0 767 MLA(hi, lo, (*fo)[7], ptr[ 2]);
Chris@0 768 MLN(hi, lo);
Chris@0 769
Chris@0 770 ptr = *Dptr + pe;
Chris@0 771 MLA(hi, lo, (*fe)[7], ptr[ 2]);
Chris@0 772 MLA(hi, lo, (*fe)[6], ptr[ 4]);
Chris@0 773 MLA(hi, lo, (*fe)[5], ptr[ 6]);
Chris@0 774 MLA(hi, lo, (*fe)[4], ptr[ 8]);
Chris@0 775 MLA(hi, lo, (*fe)[3], ptr[10]);
Chris@0 776 MLA(hi, lo, (*fe)[2], ptr[12]);
Chris@0 777 MLA(hi, lo, (*fe)[1], ptr[14]);
Chris@0 778 MLA(hi, lo, (*fe)[0], ptr[ 0]);
Chris@0 779
Chris@0 780 *pcm1++ = SHIFT(MLZ(hi, lo));
Chris@0 781
Chris@0 782 ptr = *Dptr - po;
Chris@0 783 ML0(hi, lo, (*fo)[7], ptr[31 - 2]);
Chris@0 784 MLA(hi, lo, (*fo)[6], ptr[31 - 4]);
Chris@0 785 MLA(hi, lo, (*fo)[5], ptr[31 - 6]);
Chris@0 786 MLA(hi, lo, (*fo)[4], ptr[31 - 8]);
Chris@0 787 MLA(hi, lo, (*fo)[3], ptr[31 - 10]);
Chris@0 788 MLA(hi, lo, (*fo)[2], ptr[31 - 12]);
Chris@0 789 MLA(hi, lo, (*fo)[1], ptr[31 - 14]);
Chris@0 790 MLA(hi, lo, (*fo)[0], ptr[31 - 16]);
Chris@0 791
Chris@0 792 ptr = *Dptr - pe;
Chris@0 793 MLA(hi, lo, (*fe)[0], ptr[31 - 16]);
Chris@0 794 MLA(hi, lo, (*fe)[1], ptr[31 - 14]);
Chris@0 795 MLA(hi, lo, (*fe)[2], ptr[31 - 12]);
Chris@0 796 MLA(hi, lo, (*fe)[3], ptr[31 - 10]);
Chris@0 797 MLA(hi, lo, (*fe)[4], ptr[31 - 8]);
Chris@0 798 MLA(hi, lo, (*fe)[5], ptr[31 - 6]);
Chris@0 799 MLA(hi, lo, (*fe)[6], ptr[31 - 4]);
Chris@0 800 MLA(hi, lo, (*fe)[7], ptr[31 - 2]);
Chris@0 801
Chris@0 802 *pcm2-- = SHIFT(MLZ(hi, lo));
Chris@0 803 }
Chris@0 804
Chris@0 805 ++fo;
Chris@0 806 }
Chris@0 807
Chris@0 808 ++Dptr;
Chris@0 809
Chris@0 810 ptr = *Dptr + po;
Chris@0 811 ML0(hi, lo, (*fo)[0], ptr[ 0]);
Chris@0 812 MLA(hi, lo, (*fo)[1], ptr[14]);
Chris@0 813 MLA(hi, lo, (*fo)[2], ptr[12]);
Chris@0 814 MLA(hi, lo, (*fo)[3], ptr[10]);
Chris@0 815 MLA(hi, lo, (*fo)[4], ptr[ 8]);
Chris@0 816 MLA(hi, lo, (*fo)[5], ptr[ 6]);
Chris@0 817 MLA(hi, lo, (*fo)[6], ptr[ 4]);
Chris@0 818 MLA(hi, lo, (*fo)[7], ptr[ 2]);
Chris@0 819
Chris@0 820 *pcm1 = SHIFT(-MLZ(hi, lo));
Chris@0 821 pcm1 += 8;
Chris@0 822
Chris@0 823 phase = (phase + 1) % 16;
Chris@0 824 }
Chris@0 825 }
Chris@0 826 }
Chris@0 827
Chris@0 828 /*
Chris@0 829 * NAME: synth->frame()
Chris@0 830 * DESCRIPTION: perform PCM synthesis of frame subband samples
Chris@0 831 */
Chris@0 832 void mad_synth_frame(struct mad_synth *synth, struct mad_frame const *frame)
Chris@0 833 {
Chris@0 834 unsigned int nch, ns;
Chris@0 835 void (*synth_frame)(struct mad_synth *, struct mad_frame const *,
Chris@0 836 unsigned int, unsigned int);
Chris@0 837
Chris@0 838 nch = MAD_NCHANNELS(&frame->header);
Chris@0 839 ns = MAD_NSBSAMPLES(&frame->header);
Chris@0 840
Chris@0 841 synth->pcm.samplerate = frame->header.samplerate;
Chris@0 842 synth->pcm.channels = nch;
Chris@0 843 synth->pcm.length = 32 * ns;
Chris@0 844
Chris@0 845 synth_frame = synth_full;
Chris@0 846
Chris@0 847 if (frame->options & MAD_OPTION_HALFSAMPLERATE) {
Chris@0 848 synth->pcm.samplerate /= 2;
Chris@0 849 synth->pcm.length /= 2;
Chris@0 850
Chris@0 851 synth_frame = synth_half;
Chris@0 852 }
Chris@0 853
Chris@0 854 synth_frame(synth, frame, nch, ns);
Chris@0 855
Chris@0 856 synth->phase = (synth->phase + ns) % 16;
Chris@0 857 }