annotate src/libmad-0.15.1b/fixed.h @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents c7265573341e
children
rev   line source
Chris@0 1 /*
Chris@0 2 * libmad - MPEG audio decoder library
Chris@0 3 * Copyright (C) 2000-2004 Underbit Technologies, Inc.
Chris@0 4 *
Chris@0 5 * This program is free software; you can redistribute it and/or modify
Chris@0 6 * it under the terms of the GNU General Public License as published by
Chris@0 7 * the Free Software Foundation; either version 2 of the License, or
Chris@0 8 * (at your option) any later version.
Chris@0 9 *
Chris@0 10 * This program is distributed in the hope that it will be useful,
Chris@0 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@0 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@0 13 * GNU General Public License for more details.
Chris@0 14 *
Chris@0 15 * You should have received a copy of the GNU General Public License
Chris@0 16 * along with this program; if not, write to the Free Software
Chris@0 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Chris@0 18 *
Chris@0 19 * $Id: fixed.h,v 1.38 2004/02/17 02:02:03 rob Exp $
Chris@0 20 */
Chris@0 21
Chris@0 22 # ifndef LIBMAD_FIXED_H
Chris@0 23 # define LIBMAD_FIXED_H
Chris@0 24
Chris@0 25 # if SIZEOF_INT >= 4
Chris@0 26 typedef signed int mad_fixed_t;
Chris@0 27
Chris@0 28 typedef signed int mad_fixed64hi_t;
Chris@0 29 typedef unsigned int mad_fixed64lo_t;
Chris@0 30 # else
Chris@0 31 typedef signed long mad_fixed_t;
Chris@0 32
Chris@0 33 typedef signed long mad_fixed64hi_t;
Chris@0 34 typedef unsigned long mad_fixed64lo_t;
Chris@0 35 # endif
Chris@0 36
Chris@0 37 # if defined(_MSC_VER)
Chris@0 38 # define mad_fixed64_t signed __int64
Chris@0 39 # elif 1 || defined(__GNUC__)
Chris@0 40 # define mad_fixed64_t signed long long
Chris@0 41 # endif
Chris@0 42
Chris@0 43 # if defined(FPM_FLOAT)
Chris@0 44 typedef double mad_sample_t;
Chris@0 45 # else
Chris@0 46 typedef mad_fixed_t mad_sample_t;
Chris@0 47 # endif
Chris@0 48
Chris@0 49 /*
Chris@0 50 * Fixed-point format: 0xABBBBBBB
Chris@0 51 * A == whole part (sign + 3 bits)
Chris@0 52 * B == fractional part (28 bits)
Chris@0 53 *
Chris@0 54 * Values are signed two's complement, so the effective range is:
Chris@0 55 * 0x80000000 to 0x7fffffff
Chris@0 56 * -8.0 to +7.9999999962747097015380859375
Chris@0 57 *
Chris@0 58 * The smallest representable value is:
Chris@0 59 * 0x00000001 == 0.0000000037252902984619140625 (i.e. about 3.725e-9)
Chris@0 60 *
Chris@0 61 * 28 bits of fractional accuracy represent about
Chris@0 62 * 8.6 digits of decimal accuracy.
Chris@0 63 *
Chris@0 64 * Fixed-point numbers can be added or subtracted as normal
Chris@0 65 * integers, but multiplication requires shifting the 64-bit result
Chris@0 66 * from 56 fractional bits back to 28 (and rounding.)
Chris@0 67 *
Chris@0 68 * Changing the definition of MAD_F_FRACBITS is only partially
Chris@0 69 * supported, and must be done with care.
Chris@0 70 */
Chris@0 71
Chris@0 72 # define MAD_F_FRACBITS 28
Chris@0 73
Chris@0 74 # if MAD_F_FRACBITS == 28
Chris@0 75 # define MAD_F(x) ((mad_fixed_t) (x##L))
Chris@0 76 # else
Chris@0 77 # if MAD_F_FRACBITS < 28
Chris@0 78 # warning "MAD_F_FRACBITS < 28"
Chris@0 79 # define MAD_F(x) ((mad_fixed_t) \
Chris@0 80 (((x##L) + \
Chris@0 81 (1L << (28 - MAD_F_FRACBITS - 1))) >> \
Chris@0 82 (28 - MAD_F_FRACBITS)))
Chris@0 83 # elif MAD_F_FRACBITS > 28
Chris@0 84 # error "MAD_F_FRACBITS > 28 not currently supported"
Chris@0 85 # define MAD_F(x) ((mad_fixed_t) \
Chris@0 86 ((x##L) << (MAD_F_FRACBITS - 28)))
Chris@0 87 # endif
Chris@0 88 # endif
Chris@0 89
Chris@0 90 # define MAD_F_MIN ((mad_fixed_t) -0x80000000L)
Chris@0 91 # define MAD_F_MAX ((mad_fixed_t) +0x7fffffffL)
Chris@0 92
Chris@0 93 # define MAD_F_ONE MAD_F(0x10000000)
Chris@0 94
Chris@0 95 # define mad_f_tofixed(x) ((mad_fixed_t) \
Chris@0 96 ((x) * (double) (1L << MAD_F_FRACBITS) + 0.5))
Chris@0 97 # define mad_f_todouble(x) ((double) \
Chris@0 98 ((x) / (double) (1L << MAD_F_FRACBITS)))
Chris@0 99
Chris@0 100 # define mad_f_intpart(x) ((x) >> MAD_F_FRACBITS)
Chris@0 101 # define mad_f_fracpart(x) ((x) & ((1L << MAD_F_FRACBITS) - 1))
Chris@0 102 /* (x should be positive) */
Chris@0 103
Chris@0 104 # define mad_f_fromint(x) ((x) << MAD_F_FRACBITS)
Chris@0 105
Chris@0 106 # define mad_f_add(x, y) ((x) + (y))
Chris@0 107 # define mad_f_sub(x, y) ((x) - (y))
Chris@0 108
Chris@0 109 # if defined(FPM_FLOAT)
Chris@0 110 # error "FPM_FLOAT not yet supported"
Chris@0 111
Chris@0 112 # undef MAD_F
Chris@0 113 # define MAD_F(x) mad_f_todouble(x)
Chris@0 114
Chris@0 115 # define mad_f_mul(x, y) ((x) * (y))
Chris@0 116 # define mad_f_scale64
Chris@0 117
Chris@0 118 # undef ASO_ZEROCHECK
Chris@0 119
Chris@0 120 # elif defined(FPM_64BIT)
Chris@0 121
Chris@0 122 /*
Chris@0 123 * This version should be the most accurate if 64-bit types are supported by
Chris@0 124 * the compiler, although it may not be the most efficient.
Chris@0 125 */
Chris@0 126 # if defined(OPT_ACCURACY)
Chris@0 127 # define mad_f_mul(x, y) \
Chris@0 128 ((mad_fixed_t) \
Chris@0 129 ((((mad_fixed64_t) (x) * (y)) + \
Chris@0 130 (1L << (MAD_F_SCALEBITS - 1))) >> MAD_F_SCALEBITS))
Chris@0 131 # else
Chris@0 132 # define mad_f_mul(x, y) \
Chris@0 133 ((mad_fixed_t) (((mad_fixed64_t) (x) * (y)) >> MAD_F_SCALEBITS))
Chris@0 134 # endif
Chris@0 135
Chris@0 136 # define MAD_F_SCALEBITS MAD_F_FRACBITS
Chris@0 137
Chris@0 138 /* --- Intel --------------------------------------------------------------- */
Chris@0 139
Chris@0 140 # elif defined(FPM_INTEL)
Chris@0 141
Chris@0 142 # if defined(_MSC_VER)
Chris@0 143 # pragma warning(push)
Chris@0 144 # pragma warning(disable: 4035) /* no return value */
Chris@0 145 static __forceinline
Chris@0 146 mad_fixed_t mad_f_mul_inline(mad_fixed_t x, mad_fixed_t y)
Chris@0 147 {
Chris@0 148 enum {
Chris@0 149 fracbits = MAD_F_FRACBITS
Chris@0 150 };
Chris@0 151
Chris@0 152 __asm {
Chris@0 153 mov eax, x
Chris@0 154 imul y
Chris@0 155 shrd eax, edx, fracbits
Chris@0 156 }
Chris@0 157
Chris@0 158 /* implicit return of eax */
Chris@0 159 }
Chris@0 160 # pragma warning(pop)
Chris@0 161
Chris@0 162 # define mad_f_mul mad_f_mul_inline
Chris@0 163 # define mad_f_scale64
Chris@0 164 # else
Chris@0 165 /*
Chris@0 166 * This Intel version is fast and accurate; the disposition of the least
Chris@0 167 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
Chris@0 168 */
Chris@0 169 # define MAD_F_MLX(hi, lo, x, y) \
Chris@0 170 asm ("imull %3" \
Chris@0 171 : "=a" (lo), "=d" (hi) \
Chris@0 172 : "%a" (x), "rm" (y) \
Chris@0 173 : "cc")
Chris@0 174
Chris@0 175 # if defined(OPT_ACCURACY)
Chris@0 176 /*
Chris@0 177 * This gives best accuracy but is not very fast.
Chris@0 178 */
Chris@0 179 # define MAD_F_MLA(hi, lo, x, y) \
Chris@0 180 ({ mad_fixed64hi_t __hi; \
Chris@0 181 mad_fixed64lo_t __lo; \
Chris@0 182 MAD_F_MLX(__hi, __lo, (x), (y)); \
Chris@0 183 asm ("addl %2,%0\n\t" \
Chris@0 184 "adcl %3,%1" \
Chris@0 185 : "=rm" (lo), "=rm" (hi) \
Chris@0 186 : "r" (__lo), "r" (__hi), "0" (lo), "1" (hi) \
Chris@0 187 : "cc"); \
Chris@0 188 })
Chris@0 189 # endif /* OPT_ACCURACY */
Chris@0 190
Chris@0 191 # if defined(OPT_ACCURACY)
Chris@0 192 /*
Chris@0 193 * Surprisingly, this is faster than SHRD followed by ADC.
Chris@0 194 */
Chris@0 195 # define mad_f_scale64(hi, lo) \
Chris@0 196 ({ mad_fixed64hi_t __hi_; \
Chris@0 197 mad_fixed64lo_t __lo_; \
Chris@0 198 mad_fixed_t __result; \
Chris@0 199 asm ("addl %4,%2\n\t" \
Chris@0 200 "adcl %5,%3" \
Chris@0 201 : "=rm" (__lo_), "=rm" (__hi_) \
Chris@0 202 : "0" (lo), "1" (hi), \
Chris@0 203 "ir" (1L << (MAD_F_SCALEBITS - 1)), "ir" (0) \
Chris@0 204 : "cc"); \
Chris@0 205 asm ("shrdl %3,%2,%1" \
Chris@0 206 : "=rm" (__result) \
Chris@0 207 : "0" (__lo_), "r" (__hi_), "I" (MAD_F_SCALEBITS) \
Chris@0 208 : "cc"); \
Chris@0 209 __result; \
Chris@0 210 })
Chris@0 211 # elif defined(OPT_INTEL)
Chris@0 212 /*
Chris@0 213 * Alternate Intel scaling that may or may not perform better.
Chris@0 214 */
Chris@0 215 # define mad_f_scale64(hi, lo) \
Chris@0 216 ({ mad_fixed_t __result; \
Chris@0 217 asm ("shrl %3,%1\n\t" \
Chris@0 218 "shll %4,%2\n\t" \
Chris@0 219 "orl %2,%1" \
Chris@0 220 : "=rm" (__result) \
Chris@0 221 : "0" (lo), "r" (hi), \
Chris@0 222 "I" (MAD_F_SCALEBITS), "I" (32 - MAD_F_SCALEBITS) \
Chris@0 223 : "cc"); \
Chris@0 224 __result; \
Chris@0 225 })
Chris@0 226 # else
Chris@0 227 # define mad_f_scale64(hi, lo) \
Chris@0 228 ({ mad_fixed_t __result; \
Chris@0 229 asm ("shrdl %3,%2,%1" \
Chris@0 230 : "=rm" (__result) \
Chris@0 231 : "0" (lo), "r" (hi), "I" (MAD_F_SCALEBITS) \
Chris@0 232 : "cc"); \
Chris@0 233 __result; \
Chris@0 234 })
Chris@0 235 # endif /* OPT_ACCURACY */
Chris@0 236
Chris@0 237 # define MAD_F_SCALEBITS MAD_F_FRACBITS
Chris@0 238 # endif
Chris@0 239
Chris@0 240 /* --- ARM ----------------------------------------------------------------- */
Chris@0 241
Chris@0 242 # elif defined(FPM_ARM)
Chris@0 243
Chris@0 244 /*
Chris@0 245 * This ARM V4 version is as accurate as FPM_64BIT but much faster. The
Chris@0 246 * least significant bit is properly rounded at no CPU cycle cost!
Chris@0 247 */
Chris@0 248 # if 1
Chris@0 249 /*
Chris@0 250 * This is faster than the default implementation via MAD_F_MLX() and
Chris@0 251 * mad_f_scale64().
Chris@0 252 */
Chris@0 253 # define mad_f_mul(x, y) \
Chris@0 254 ({ mad_fixed64hi_t __hi; \
Chris@0 255 mad_fixed64lo_t __lo; \
Chris@0 256 mad_fixed_t __result; \
Chris@0 257 asm ("smull %0, %1, %3, %4\n\t" \
Chris@0 258 "movs %0, %0, lsr %5\n\t" \
Chris@0 259 "adc %2, %0, %1, lsl %6" \
Chris@0 260 : "=&r" (__lo), "=&r" (__hi), "=r" (__result) \
Chris@0 261 : "%r" (x), "r" (y), \
Chris@0 262 "M" (MAD_F_SCALEBITS), "M" (32 - MAD_F_SCALEBITS) \
Chris@0 263 : "cc"); \
Chris@0 264 __result; \
Chris@0 265 })
Chris@0 266 # endif
Chris@0 267
Chris@0 268 # define MAD_F_MLX(hi, lo, x, y) \
Chris@0 269 asm ("smull %0, %1, %2, %3" \
Chris@0 270 : "=&r" (lo), "=&r" (hi) \
Chris@0 271 : "%r" (x), "r" (y))
Chris@0 272
Chris@0 273 # define MAD_F_MLA(hi, lo, x, y) \
Chris@0 274 asm ("smlal %0, %1, %2, %3" \
Chris@0 275 : "+r" (lo), "+r" (hi) \
Chris@0 276 : "%r" (x), "r" (y))
Chris@0 277
Chris@0 278 # define MAD_F_MLN(hi, lo) \
Chris@0 279 asm ("rsbs %0, %2, #0\n\t" \
Chris@0 280 "rsc %1, %3, #0" \
Chris@0 281 : "=r" (lo), "=r" (hi) \
Chris@0 282 : "0" (lo), "1" (hi) \
Chris@0 283 : "cc")
Chris@0 284
Chris@0 285 # define mad_f_scale64(hi, lo) \
Chris@0 286 ({ mad_fixed_t __result; \
Chris@0 287 asm ("movs %0, %1, lsr %3\n\t" \
Chris@0 288 "adc %0, %0, %2, lsl %4" \
Chris@0 289 : "=&r" (__result) \
Chris@0 290 : "r" (lo), "r" (hi), \
Chris@0 291 "M" (MAD_F_SCALEBITS), "M" (32 - MAD_F_SCALEBITS) \
Chris@0 292 : "cc"); \
Chris@0 293 __result; \
Chris@0 294 })
Chris@0 295
Chris@0 296 # define MAD_F_SCALEBITS MAD_F_FRACBITS
Chris@0 297
Chris@0 298 /* --- MIPS ---------------------------------------------------------------- */
Chris@0 299
Chris@0 300 # elif defined(FPM_MIPS)
Chris@0 301
Chris@0 302 /*
Chris@0 303 * This MIPS version is fast and accurate; the disposition of the least
Chris@0 304 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
Chris@0 305 */
Chris@0 306 # define MAD_F_MLX(hi, lo, x, y) \
Chris@0 307 asm ("mult %2,%3" \
Chris@0 308 : "=l" (lo), "=h" (hi) \
Chris@0 309 : "%r" (x), "r" (y))
Chris@0 310
Chris@0 311 # if defined(HAVE_MADD_ASM)
Chris@0 312 # define MAD_F_MLA(hi, lo, x, y) \
Chris@0 313 asm ("madd %2,%3" \
Chris@0 314 : "+l" (lo), "+h" (hi) \
Chris@0 315 : "%r" (x), "r" (y))
Chris@0 316 # elif defined(HAVE_MADD16_ASM)
Chris@0 317 /*
Chris@0 318 * This loses significant accuracy due to the 16-bit integer limit in the
Chris@0 319 * multiply/accumulate instruction.
Chris@0 320 */
Chris@0 321 # define MAD_F_ML0(hi, lo, x, y) \
Chris@0 322 asm ("mult %2,%3" \
Chris@0 323 : "=l" (lo), "=h" (hi) \
Chris@0 324 : "%r" ((x) >> 12), "r" ((y) >> 16))
Chris@0 325 # define MAD_F_MLA(hi, lo, x, y) \
Chris@0 326 asm ("madd16 %2,%3" \
Chris@0 327 : "+l" (lo), "+h" (hi) \
Chris@0 328 : "%r" ((x) >> 12), "r" ((y) >> 16))
Chris@0 329 # define MAD_F_MLZ(hi, lo) ((mad_fixed_t) (lo))
Chris@0 330 # endif
Chris@0 331
Chris@0 332 # if defined(OPT_SPEED)
Chris@0 333 # define mad_f_scale64(hi, lo) \
Chris@0 334 ((mad_fixed_t) ((hi) << (32 - MAD_F_SCALEBITS)))
Chris@0 335 # define MAD_F_SCALEBITS MAD_F_FRACBITS
Chris@0 336 # endif
Chris@0 337
Chris@0 338 /* --- SPARC --------------------------------------------------------------- */
Chris@0 339
Chris@0 340 # elif defined(FPM_SPARC)
Chris@0 341
Chris@0 342 /*
Chris@0 343 * This SPARC V8 version is fast and accurate; the disposition of the least
Chris@0 344 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
Chris@0 345 */
Chris@0 346 # define MAD_F_MLX(hi, lo, x, y) \
Chris@0 347 asm ("smul %2, %3, %0\n\t" \
Chris@0 348 "rd %%y, %1" \
Chris@0 349 : "=r" (lo), "=r" (hi) \
Chris@0 350 : "%r" (x), "rI" (y))
Chris@0 351
Chris@0 352 /* --- PowerPC ------------------------------------------------------------- */
Chris@0 353
Chris@0 354 # elif defined(FPM_PPC)
Chris@0 355
Chris@0 356 /*
Chris@0 357 * This PowerPC version is fast and accurate; the disposition of the least
Chris@0 358 * significant bit depends on OPT_ACCURACY via mad_f_scale64().
Chris@0 359 */
Chris@0 360 # define MAD_F_MLX(hi, lo, x, y) \
Chris@0 361 do { \
Chris@0 362 asm ("mullw %0,%1,%2" \
Chris@0 363 : "=r" (lo) \
Chris@0 364 : "%r" (x), "r" (y)); \
Chris@0 365 asm ("mulhw %0,%1,%2" \
Chris@0 366 : "=r" (hi) \
Chris@0 367 : "%r" (x), "r" (y)); \
Chris@0 368 } \
Chris@0 369 while (0)
Chris@0 370
Chris@0 371 # if defined(OPT_ACCURACY)
Chris@0 372 /*
Chris@0 373 * This gives best accuracy but is not very fast.
Chris@0 374 */
Chris@0 375 # define MAD_F_MLA(hi, lo, x, y) \
Chris@0 376 ({ mad_fixed64hi_t __hi; \
Chris@0 377 mad_fixed64lo_t __lo; \
Chris@0 378 MAD_F_MLX(__hi, __lo, (x), (y)); \
Chris@0 379 asm ("addc %0,%2,%3\n\t" \
Chris@0 380 "adde %1,%4,%5" \
Chris@0 381 : "=r" (lo), "=r" (hi) \
Chris@0 382 : "%r" (lo), "r" (__lo), \
Chris@0 383 "%r" (hi), "r" (__hi) \
Chris@0 384 : "xer"); \
Chris@0 385 })
Chris@0 386 # endif
Chris@0 387
Chris@0 388 # if defined(OPT_ACCURACY)
Chris@0 389 /*
Chris@0 390 * This is slower than the truncating version below it.
Chris@0 391 */
Chris@0 392 # define mad_f_scale64(hi, lo) \
Chris@0 393 ({ mad_fixed_t __result, __round; \
Chris@0 394 asm ("rotrwi %0,%1,%2" \
Chris@0 395 : "=r" (__result) \
Chris@0 396 : "r" (lo), "i" (MAD_F_SCALEBITS)); \
Chris@0 397 asm ("extrwi %0,%1,1,0" \
Chris@0 398 : "=r" (__round) \
Chris@0 399 : "r" (__result)); \
Chris@0 400 asm ("insrwi %0,%1,%2,0" \
Chris@0 401 : "+r" (__result) \
Chris@0 402 : "r" (hi), "i" (MAD_F_SCALEBITS)); \
Chris@0 403 asm ("add %0,%1,%2" \
Chris@0 404 : "=r" (__result) \
Chris@0 405 : "%r" (__result), "r" (__round)); \
Chris@0 406 __result; \
Chris@0 407 })
Chris@0 408 # else
Chris@0 409 # define mad_f_scale64(hi, lo) \
Chris@0 410 ({ mad_fixed_t __result; \
Chris@0 411 asm ("rotrwi %0,%1,%2" \
Chris@0 412 : "=r" (__result) \
Chris@0 413 : "r" (lo), "i" (MAD_F_SCALEBITS)); \
Chris@0 414 asm ("insrwi %0,%1,%2,0" \
Chris@0 415 : "+r" (__result) \
Chris@0 416 : "r" (hi), "i" (MAD_F_SCALEBITS)); \
Chris@0 417 __result; \
Chris@0 418 })
Chris@0 419 # endif
Chris@0 420
Chris@0 421 # define MAD_F_SCALEBITS MAD_F_FRACBITS
Chris@0 422
Chris@0 423 /* --- Default ------------------------------------------------------------- */
Chris@0 424
Chris@0 425 # elif defined(FPM_DEFAULT)
Chris@0 426
Chris@0 427 /*
Chris@0 428 * This version is the most portable but it loses significant accuracy.
Chris@0 429 * Furthermore, accuracy is biased against the second argument, so care
Chris@0 430 * should be taken when ordering operands.
Chris@0 431 *
Chris@0 432 * The scale factors are constant as this is not used with SSO.
Chris@0 433 *
Chris@0 434 * Pre-rounding is required to stay within the limits of compliance.
Chris@0 435 */
Chris@0 436 # if defined(OPT_SPEED)
Chris@0 437 # define mad_f_mul(x, y) (((x) >> 12) * ((y) >> 16))
Chris@0 438 # else
Chris@0 439 # define mad_f_mul(x, y) ((((x) + (1L << 11)) >> 12) * \
Chris@0 440 (((y) + (1L << 15)) >> 16))
Chris@0 441 # endif
Chris@0 442
Chris@0 443 /* ------------------------------------------------------------------------- */
Chris@0 444
Chris@0 445 # else
Chris@0 446 # error "no FPM selected"
Chris@0 447 # endif
Chris@0 448
Chris@0 449 /* default implementations */
Chris@0 450
Chris@0 451 # if !defined(mad_f_mul)
Chris@0 452 # define mad_f_mul(x, y) \
Chris@0 453 ({ register mad_fixed64hi_t __hi; \
Chris@0 454 register mad_fixed64lo_t __lo; \
Chris@0 455 MAD_F_MLX(__hi, __lo, (x), (y)); \
Chris@0 456 mad_f_scale64(__hi, __lo); \
Chris@0 457 })
Chris@0 458 # endif
Chris@0 459
Chris@0 460 # if !defined(MAD_F_MLA)
Chris@0 461 # define MAD_F_ML0(hi, lo, x, y) ((lo) = mad_f_mul((x), (y)))
Chris@0 462 # define MAD_F_MLA(hi, lo, x, y) ((lo) += mad_f_mul((x), (y)))
Chris@0 463 # define MAD_F_MLN(hi, lo) ((lo) = -(lo))
Chris@0 464 # define MAD_F_MLZ(hi, lo) ((void) (hi), (mad_fixed_t) (lo))
Chris@0 465 # endif
Chris@0 466
Chris@0 467 # if !defined(MAD_F_ML0)
Chris@0 468 # define MAD_F_ML0(hi, lo, x, y) MAD_F_MLX((hi), (lo), (x), (y))
Chris@0 469 # endif
Chris@0 470
Chris@0 471 # if !defined(MAD_F_MLN)
Chris@0 472 # define MAD_F_MLN(hi, lo) ((hi) = ((lo) = -(lo)) ? ~(hi) : -(hi))
Chris@0 473 # endif
Chris@0 474
Chris@0 475 # if !defined(MAD_F_MLZ)
Chris@0 476 # define MAD_F_MLZ(hi, lo) mad_f_scale64((hi), (lo))
Chris@0 477 # endif
Chris@0 478
Chris@0 479 # if !defined(mad_f_scale64)
Chris@0 480 # if defined(OPT_ACCURACY)
Chris@0 481 # define mad_f_scale64(hi, lo) \
Chris@0 482 ((((mad_fixed_t) \
Chris@0 483 (((hi) << (32 - (MAD_F_SCALEBITS - 1))) | \
Chris@0 484 ((lo) >> (MAD_F_SCALEBITS - 1)))) + 1) >> 1)
Chris@0 485 # else
Chris@0 486 # define mad_f_scale64(hi, lo) \
Chris@0 487 ((mad_fixed_t) \
Chris@0 488 (((hi) << (32 - MAD_F_SCALEBITS)) | \
Chris@0 489 ((lo) >> MAD_F_SCALEBITS)))
Chris@0 490 # endif
Chris@0 491 # define MAD_F_SCALEBITS MAD_F_FRACBITS
Chris@0 492 # endif
Chris@0 493
Chris@0 494 /* C routines */
Chris@0 495
Chris@0 496 mad_fixed_t mad_f_abs(mad_fixed_t);
Chris@0 497 mad_fixed_t mad_f_div(mad_fixed_t, mad_fixed_t);
Chris@0 498
Chris@0 499 # endif