annotate src/fftw-3.3.3/simd-support/simd-sse2.h @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
Chris@10 22 # error "SSE/SSE2 only works in single/double precision"
Chris@10 23 #endif
Chris@10 24
Chris@10 25 #ifdef FFTW_SINGLE
Chris@10 26 # define DS(d,s) s /* single-precision option */
Chris@10 27 # define SUFF(name) name ## s
Chris@10 28 #else
Chris@10 29 # define DS(d,s) d /* double-precision option */
Chris@10 30 # define SUFF(name) name ## d
Chris@10 31 #endif
Chris@10 32
Chris@10 33 #define SIMD_SUFFIX _sse2 /* for renaming */
Chris@10 34 #define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
Chris@10 35 #define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
Chris@10 36 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
Chris@10 37
Chris@10 38 #if defined(__GNUC__) && !defined(FFTW_SINGLE) && !defined(__SSE2__)
Chris@10 39 # error "compiling simd-sse2.h in double precision without -msse2"
Chris@10 40 #elif defined(__GNUC__) && defined(FFTW_SINGLE) && !defined(__SSE__)
Chris@10 41 # error "compiling simd-sse2.h in single precision without -msse"
Chris@10 42 #endif
Chris@10 43
Chris@10 44 #ifdef _MSC_VER
Chris@10 45 #ifndef inline
Chris@10 46 #define inline __inline
Chris@10 47 #endif
Chris@10 48 #endif
Chris@10 49
Chris@10 50 /* some versions of glibc's sys/cdefs.h define __inline to be empty,
Chris@10 51 which is wrong because emmintrin.h defines several inline
Chris@10 52 procedures */
Chris@10 53 #ifndef _MSC_VER
Chris@10 54 #undef __inline
Chris@10 55 #endif
Chris@10 56
Chris@10 57 #ifdef FFTW_SINGLE
Chris@10 58 # include <xmmintrin.h>
Chris@10 59 #else
Chris@10 60 # include <emmintrin.h>
Chris@10 61 #endif
Chris@10 62
Chris@10 63 typedef DS(__m128d,__m128) V;
Chris@10 64 #define VADD SUFF(_mm_add_p)
Chris@10 65 #define VSUB SUFF(_mm_sub_p)
Chris@10 66 #define VMUL SUFF(_mm_mul_p)
Chris@10 67 #define VXOR SUFF(_mm_xor_p)
Chris@10 68 #define SHUF SUFF(_mm_shuffle_p)
Chris@10 69 #define UNPCKL SUFF(_mm_unpacklo_p)
Chris@10 70 #define UNPCKH SUFF(_mm_unpackhi_p)
Chris@10 71
Chris@10 72 #define SHUFVALS(fp0,fp1,fp2,fp3) \
Chris@10 73 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
Chris@10 74
Chris@10 75 #define VDUPL(x) DS(UNPCKL(x, x), SHUF(x, x, SHUFVALS(0, 0, 2, 2)))
Chris@10 76 #define VDUPH(x) DS(UNPCKH(x, x), SHUF(x, x, SHUFVALS(1, 1, 3, 3)))
Chris@10 77 #define STOREH(a, v) DS(_mm_storeh_pd(a, v), _mm_storeh_pi((__m64 *)(a), v))
Chris@10 78 #define STOREL(a, v) DS(_mm_storel_pd(a, v), _mm_storel_pi((__m64 *)(a), v))
Chris@10 79
Chris@10 80
Chris@10 81 #ifdef __GNUC__
Chris@10 82 /*
Chris@10 83 * gcc-3.3 generates slow code for mm_set_ps (write all elements to
Chris@10 84 * the stack and load __m128 from the stack).
Chris@10 85 *
Chris@10 86 * gcc-3.[34] generates slow code for mm_set_ps1 (load into low element
Chris@10 87 * and shuffle).
Chris@10 88 *
Chris@10 89 * This hack forces gcc to generate a constant __m128 at compile time.
Chris@10 90 */
Chris@10 91 union rvec {
Chris@10 92 R r[DS(2,4)];
Chris@10 93 V v;
Chris@10 94 };
Chris@10 95
Chris@10 96 # ifdef FFTW_SINGLE
Chris@10 97 # define DVK(var, val) V var = __extension__ ({ \
Chris@10 98 static const union rvec _var = { {val,val,val,val} }; _var.v; })
Chris@10 99 # else
Chris@10 100 # define DVK(var, val) V var = __extension__ ({ \
Chris@10 101 static const union rvec _var = { {val,val} }; _var.v; })
Chris@10 102 # endif
Chris@10 103 # define LDK(x) x
Chris@10 104 #else
Chris@10 105 # define DVK(var, val) const R var = K(val)
Chris@10 106 # define LDK(x) DS(_mm_set1_pd,_mm_set_ps1)(x)
Chris@10 107 #endif
Chris@10 108
Chris@10 109 union uvec {
Chris@10 110 unsigned u[4];
Chris@10 111 V v;
Chris@10 112 };
Chris@10 113
Chris@10 114 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
Chris@10 115 {
Chris@10 116 (void)aligned_like; /* UNUSED */
Chris@10 117 (void)ivs; /* UNUSED */
Chris@10 118 return *(const V *)x;
Chris@10 119 }
Chris@10 120
Chris@10 121 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
Chris@10 122 {
Chris@10 123 (void)aligned_like; /* UNUSED */
Chris@10 124 (void)ovs; /* UNUSED */
Chris@10 125 *(V *)x = v;
Chris@10 126 }
Chris@10 127
Chris@10 128 #ifdef FFTW_SINGLE
Chris@10 129
Chris@10 130 # ifdef _MSC_VER
Chris@10 131 /* Temporarily disable the warning "uninitialized local variable
Chris@10 132 'name' used" and runtime checks for using a variable before it is
Chris@10 133 defined which is erroneously triggered by the LOADL0 / LOADH macros
Chris@10 134 as they only modify VAL partly each. */
Chris@10 135 # pragma warning(disable : 4700)
Chris@10 136 # pragma runtime_checks("u", off)
Chris@10 137 # endif
Chris@10 138
Chris@10 139 static inline V LD(const R *x, INT ivs, const R *aligned_like)
Chris@10 140 {
Chris@10 141 V var;
Chris@10 142 (void)aligned_like; /* UNUSED */
Chris@10 143 # ifdef __GNUC__
Chris@10 144 /* We use inline asm because gcc-3.x generates slow code for
Chris@10 145 _mm_loadh_pi(). gcc-3.x insists upon having an existing variable for
Chris@10 146 VAL, which is however never used. Thus, it generates code to move
Chris@10 147 values in and out the variable. Worse still, gcc-4.0 stores VAL on
Chris@10 148 the stack, causing valgrind to complain about uninitialized reads. */
Chris@10 149 __asm__("movlps %1, %0\n\tmovhps %2, %0"
Chris@10 150 : "=x"(var) : "m"(x[0]), "m"(x[ivs]));
Chris@10 151 # else
Chris@10 152 # define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
Chris@10 153 # define LOADL0(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
Chris@10 154 var = LOADL0(x, var);
Chris@10 155 var = LOADH(x + ivs, var);
Chris@10 156 # endif
Chris@10 157 return var;
Chris@10 158 }
Chris@10 159
Chris@10 160 # ifdef _MSC_VER
Chris@10 161 # pragma warning(default : 4700)
Chris@10 162 # pragma runtime_checks("u", restore)
Chris@10 163 # endif
Chris@10 164
Chris@10 165 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
Chris@10 166 {
Chris@10 167 (void)aligned_like; /* UNUSED */
Chris@10 168 /* WARNING: the extra_iter hack depends upon STOREL occurring
Chris@10 169 after STOREH */
Chris@10 170 STOREH(x + ovs, v);
Chris@10 171 STOREL(x, v);
Chris@10 172 }
Chris@10 173
Chris@10 174 #else /* ! FFTW_SINGLE */
Chris@10 175 # define LD LDA
Chris@10 176 # define ST STA
Chris@10 177 #endif
Chris@10 178
Chris@10 179 #define STM2 DS(STA,ST)
Chris@10 180 #define STN2(x, v0, v1, ovs) /* nop */
Chris@10 181
Chris@10 182 #ifdef FFTW_SINGLE
Chris@10 183 # define STM4(x, v, ovs, aligned_like) /* no-op */
Chris@10 184 /* STN4 is a macro, not a function, thanks to Visual C++ developers
Chris@10 185 deciding "it would be infrequent that people would want to pass more
Chris@10 186 than 3 [__m128 parameters] by value." 3 parameters ought to be enough
Chris@10 187 for anybody. */
Chris@10 188 # define STN4(x, v0, v1, v2, v3, ovs) \
Chris@10 189 { \
Chris@10 190 V xxx0, xxx1, xxx2, xxx3; \
Chris@10 191 xxx0 = UNPCKL(v0, v2); \
Chris@10 192 xxx1 = UNPCKH(v0, v2); \
Chris@10 193 xxx2 = UNPCKL(v1, v3); \
Chris@10 194 xxx3 = UNPCKH(v1, v3); \
Chris@10 195 STA(x, UNPCKL(xxx0, xxx2), 0, 0); \
Chris@10 196 STA(x + ovs, UNPCKH(xxx0, xxx2), 0, 0); \
Chris@10 197 STA(x + 2 * ovs, UNPCKL(xxx1, xxx3), 0, 0); \
Chris@10 198 STA(x + 3 * ovs, UNPCKH(xxx1, xxx3), 0, 0); \
Chris@10 199 }
Chris@10 200 #else /* !FFTW_SINGLE */
Chris@10 201 static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
Chris@10 202 {
Chris@10 203 (void)aligned_like; /* UNUSED */
Chris@10 204 STOREL(x, v);
Chris@10 205 STOREH(x + ovs, v);
Chris@10 206 }
Chris@10 207 # define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
Chris@10 208 #endif
Chris@10 209
Chris@10 210 static inline V FLIP_RI(V x)
Chris@10 211 {
Chris@10 212 return SHUF(x, x, DS(1, SHUFVALS(1, 0, 3, 2)));
Chris@10 213 }
Chris@10 214
Chris@10 215 extern const union uvec X(sse2_pm);
Chris@10 216 static inline V VCONJ(V x)
Chris@10 217 {
Chris@10 218 return VXOR(X(sse2_pm).v, x);
Chris@10 219 }
Chris@10 220
Chris@10 221 static inline V VBYI(V x)
Chris@10 222 {
Chris@10 223 x = VCONJ(x);
Chris@10 224 x = FLIP_RI(x);
Chris@10 225 return x;
Chris@10 226 }
Chris@10 227
Chris@10 228 /* FMA support */
Chris@10 229 #define VFMA(a, b, c) VADD(c, VMUL(a, b))
Chris@10 230 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
Chris@10 231 #define VFMS(a, b, c) VSUB(VMUL(a, b), c)
Chris@10 232 #define VFMAI(b, c) VADD(c, VBYI(b))
Chris@10 233 #define VFNMSI(b, c) VSUB(c, VBYI(b))
Chris@10 234 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
Chris@10 235 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
Chris@10 236 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
Chris@10 237
Chris@10 238 static inline V VZMUL(V tx, V sr)
Chris@10 239 {
Chris@10 240 V tr = VDUPL(tx);
Chris@10 241 V ti = VDUPH(tx);
Chris@10 242 tr = VMUL(sr, tr);
Chris@10 243 sr = VBYI(sr);
Chris@10 244 return VFMA(ti, sr, tr);
Chris@10 245 }
Chris@10 246
Chris@10 247 static inline V VZMULJ(V tx, V sr)
Chris@10 248 {
Chris@10 249 V tr = VDUPL(tx);
Chris@10 250 V ti = VDUPH(tx);
Chris@10 251 tr = VMUL(sr, tr);
Chris@10 252 sr = VBYI(sr);
Chris@10 253 return VFNMS(ti, sr, tr);
Chris@10 254 }
Chris@10 255
Chris@10 256 static inline V VZMULI(V tx, V sr)
Chris@10 257 {
Chris@10 258 V tr = VDUPL(tx);
Chris@10 259 V ti = VDUPH(tx);
Chris@10 260 ti = VMUL(ti, sr);
Chris@10 261 sr = VBYI(sr);
Chris@10 262 return VFMS(tr, sr, ti);
Chris@10 263 }
Chris@10 264
Chris@10 265 static inline V VZMULIJ(V tx, V sr)
Chris@10 266 {
Chris@10 267 V tr = VDUPL(tx);
Chris@10 268 V ti = VDUPH(tx);
Chris@10 269 ti = VMUL(ti, sr);
Chris@10 270 sr = VBYI(sr);
Chris@10 271 return VFMA(tr, sr, ti);
Chris@10 272 }
Chris@10 273
Chris@10 274 /* twiddle storage #1: compact, slower */
Chris@10 275 #ifdef FFTW_SINGLE
Chris@10 276 # define VTW1(v,x) \
Chris@10 277 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
Chris@10 278 static inline V BYTW1(const R *t, V sr)
Chris@10 279 {
Chris@10 280 const V *twp = (const V *)t;
Chris@10 281 V tx = twp[0];
Chris@10 282 V tr = UNPCKL(tx, tx);
Chris@10 283 V ti = UNPCKH(tx, tx);
Chris@10 284 tr = VMUL(tr, sr);
Chris@10 285 sr = VBYI(sr);
Chris@10 286 return VFMA(ti, sr, tr);
Chris@10 287 }
Chris@10 288 static inline V BYTWJ1(const R *t, V sr)
Chris@10 289 {
Chris@10 290 const V *twp = (const V *)t;
Chris@10 291 V tx = twp[0];
Chris@10 292 V tr = UNPCKL(tx, tx);
Chris@10 293 V ti = UNPCKH(tx, tx);
Chris@10 294 tr = VMUL(tr, sr);
Chris@10 295 sr = VBYI(sr);
Chris@10 296 return VFNMS(ti, sr, tr);
Chris@10 297 }
Chris@10 298 #else /* !FFTW_SINGLE */
Chris@10 299 # define VTW1(v,x) {TW_CEXP, v, x}
Chris@10 300 static inline V BYTW1(const R *t, V sr)
Chris@10 301 {
Chris@10 302 V tx = LD(t, 1, t);
Chris@10 303 return VZMUL(tx, sr);
Chris@10 304 }
Chris@10 305 static inline V BYTWJ1(const R *t, V sr)
Chris@10 306 {
Chris@10 307 V tx = LD(t, 1, t);
Chris@10 308 return VZMULJ(tx, sr);
Chris@10 309 }
Chris@10 310 #endif
Chris@10 311 #define TWVL1 (VL)
Chris@10 312
Chris@10 313 /* twiddle storage #2: twice the space, faster (when in cache) */
Chris@10 314 #ifdef FFTW_SINGLE
Chris@10 315 # define VTW2(v,x) \
Chris@10 316 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
Chris@10 317 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
Chris@10 318 #else /* !FFTW_SINGLE */
Chris@10 319 # define VTW2(v,x) \
Chris@10 320 {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
Chris@10 321 #endif
Chris@10 322 #define TWVL2 (2 * VL)
Chris@10 323 static inline V BYTW2(const R *t, V sr)
Chris@10 324 {
Chris@10 325 const V *twp = (const V *)t;
Chris@10 326 V si = FLIP_RI(sr);
Chris@10 327 V tr = twp[0], ti = twp[1];
Chris@10 328 return VFMA(tr, sr, VMUL(ti, si));
Chris@10 329 }
Chris@10 330 static inline V BYTWJ2(const R *t, V sr)
Chris@10 331 {
Chris@10 332 const V *twp = (const V *)t;
Chris@10 333 V si = FLIP_RI(sr);
Chris@10 334 V tr = twp[0], ti = twp[1];
Chris@10 335 return VFNMS(ti, si, VMUL(tr, sr));
Chris@10 336 }
Chris@10 337
Chris@10 338 /* twiddle storage #3 */
Chris@10 339 #ifdef FFTW_SINGLE
Chris@10 340 # define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
Chris@10 341 # define TWVL3 (VL)
Chris@10 342 #else
Chris@10 343 # define VTW3(v,x) VTW1(v,x)
Chris@10 344 # define TWVL3 TWVL1
Chris@10 345 #endif
Chris@10 346
Chris@10 347 /* twiddle storage for split arrays */
Chris@10 348 #ifdef FFTW_SINGLE
Chris@10 349 # define VTWS(v,x) \
Chris@10 350 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
Chris@10 351 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
Chris@10 352 #else
Chris@10 353 # define VTWS(v,x) \
Chris@10 354 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
Chris@10 355 #endif
Chris@10 356 #define TWVLS (2 * VL)
Chris@10 357
Chris@10 358 #define VLEAVE() /* nothing */
Chris@10 359
Chris@10 360 #include "simd-common.h"