Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
|
Chris@10
|
22 #error "AVX only works in single or double precision"
|
Chris@10
|
23 #endif
|
Chris@10
|
24
|
Chris@10
|
25 #ifdef FFTW_SINGLE
|
Chris@10
|
26 # define DS(d,s) s /* single-precision option */
|
Chris@10
|
27 # define SUFF(name) name ## s
|
Chris@10
|
28 #else
|
Chris@10
|
29 # define DS(d,s) d /* double-precision option */
|
Chris@10
|
30 # define SUFF(name) name ## d
|
Chris@10
|
31 #endif
|
Chris@10
|
32
|
Chris@10
|
33 #define SIMD_SUFFIX _avx /* for renaming */
|
Chris@10
|
34 #define VL DS(2, 4) /* SIMD complex vector length */
|
Chris@10
|
35 #define SIMD_VSTRIDE_OKA(x) ((x) == 2)
|
Chris@10
|
36 #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
|
Chris@10
|
37
|
Chris@10
|
38 #if defined(__GNUC__) && !defined(__AVX__) /* sanity check */
|
Chris@10
|
39 #error "compiling simd-avx.h without -mavx"
|
Chris@10
|
40 #endif
|
Chris@10
|
41
|
Chris@10
|
42 #ifdef _MSC_VER
|
Chris@10
|
43 #ifndef inline
|
Chris@10
|
44 #define inline __inline
|
Chris@10
|
45 #endif
|
Chris@10
|
46 #endif
|
Chris@10
|
47
|
Chris@10
|
48 #include <immintrin.h>
|
Chris@10
|
49
|
Chris@10
|
50 typedef DS(__m256d, __m256) V;
|
Chris@10
|
51 #define VADD SUFF(_mm256_add_p)
|
Chris@10
|
52 #define VSUB SUFF(_mm256_sub_p)
|
Chris@10
|
53 #define VMUL SUFF(_mm256_mul_p)
|
Chris@10
|
54 #define VXOR SUFF(_mm256_xor_p)
|
Chris@10
|
55 #define VSHUF SUFF(_mm256_shuffle_p)
|
Chris@10
|
56
|
Chris@10
|
57 #define SHUFVALD(fp0,fp1) \
|
Chris@10
|
58 (((fp1) << 3) | ((fp0) << 2) | ((fp1) << 1) | ((fp0)))
|
Chris@10
|
59 #define SHUFVALS(fp0,fp1,fp2,fp3) \
|
Chris@10
|
60 (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
|
Chris@10
|
61
|
Chris@10
|
62 #define VDUPL(x) DS(_mm256_unpacklo_pd(x, x), VSHUF(x, x, SHUFVALS(0, 0, 2, 2)))
|
Chris@10
|
63 #define VDUPH(x) DS(_mm256_unpackhi_pd(x, x), VSHUF(x, x, SHUFVALS(1, 1, 3, 3)))
|
Chris@10
|
64
|
Chris@10
|
65 #define VLIT(x0, x1) DS(_mm256_set_pd(x0, x1, x0, x1), _mm256_set_ps(x0, x1, x0, x1, x0, x1, x0, x1))
|
Chris@10
|
66 #define DVK(var, val) V var = VLIT(val, val)
|
Chris@10
|
67 #define LDK(x) x
|
Chris@10
|
68
|
Chris@10
|
69 static inline V LDA(const R *x, INT ivs, const R *aligned_like)
|
Chris@10
|
70 {
|
Chris@10
|
71 (void)aligned_like; /* UNUSED */
|
Chris@10
|
72 (void)ivs; /* UNUSED */
|
Chris@10
|
73 return SUFF(_mm256_loadu_p)(x);
|
Chris@10
|
74 }
|
Chris@10
|
75
|
Chris@10
|
76 static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
|
Chris@10
|
77 {
|
Chris@10
|
78 (void)aligned_like; /* UNUSED */
|
Chris@10
|
79 (void)ovs; /* UNUSED */
|
Chris@10
|
80 SUFF(_mm256_storeu_p)(x, v);
|
Chris@10
|
81 }
|
Chris@10
|
82
|
Chris@10
|
83 #if FFTW_SINGLE
|
Chris@10
|
84
|
Chris@10
|
85 #define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
|
Chris@10
|
86 #define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
|
Chris@10
|
87 #define STOREH(addr, val) _mm_storeh_pi((__m64 *)(addr), val)
|
Chris@10
|
88 #define STOREL(addr, val) _mm_storel_pi((__m64 *)(addr), val)
|
Chris@10
|
89
|
Chris@10
|
90 /* it seems like the only AVX way to store 4 complex floats is to
|
Chris@10
|
91 extract two pairs of complex floats into two __m128 registers, and
|
Chris@10
|
92 then use SSE-like half-stores. Similarly, to load 4 complex
|
Chris@10
|
93 floats, we load two pairs of complex floats into two __m128
|
Chris@10
|
94 registers, and then pack the two __m128 registers into one __m256
|
Chris@10
|
95 value. */
|
Chris@10
|
96 static inline V LD(const R *x, INT ivs, const R *aligned_like)
|
Chris@10
|
97 {
|
Chris@10
|
98 __m128 l, h;
|
Chris@10
|
99 V v;
|
Chris@10
|
100 (void)aligned_like; /* UNUSED */
|
Chris@10
|
101 l = LOADL(x, l);
|
Chris@10
|
102 l = LOADH(x + ivs, l);
|
Chris@10
|
103 h = LOADL(x + 2*ivs, h);
|
Chris@10
|
104 h = LOADH(x + 3*ivs, h);
|
Chris@10
|
105 v = _mm256_castps128_ps256(l);
|
Chris@10
|
106 v = _mm256_insertf128_ps(v, h, 1);
|
Chris@10
|
107 return v;
|
Chris@10
|
108 }
|
Chris@10
|
109
|
Chris@10
|
110 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
|
Chris@10
|
111 {
|
Chris@10
|
112 __m128 h = _mm256_extractf128_ps(v, 1);
|
Chris@10
|
113 __m128 l = _mm256_castps256_ps128(v);
|
Chris@10
|
114 (void)aligned_like; /* UNUSED */
|
Chris@10
|
115 /* WARNING: the extra_iter hack depends upon STOREL occurring
|
Chris@10
|
116 after STOREH */
|
Chris@10
|
117 STOREH(x + 3*ovs, h);
|
Chris@10
|
118 STOREL(x + 2*ovs, h);
|
Chris@10
|
119 STOREH(x + ovs, l);
|
Chris@10
|
120 STOREL(x, l);
|
Chris@10
|
121 }
|
Chris@10
|
122
|
Chris@10
|
123 #define STM2(x, v, ovs, aligned_like) /* no-op */
|
Chris@10
|
124 static inline void STN2(R *x, V v0, V v1, INT ovs)
|
Chris@10
|
125 {
|
Chris@10
|
126 V x0 = VSHUF(v0, v1, SHUFVALS(0, 1, 0, 1));
|
Chris@10
|
127 V x1 = VSHUF(v0, v1, SHUFVALS(2, 3, 2, 3));
|
Chris@10
|
128 __m128 h0 = _mm256_extractf128_ps(x0, 1);
|
Chris@10
|
129 __m128 l0 = _mm256_castps256_ps128(x0);
|
Chris@10
|
130 __m128 h1 = _mm256_extractf128_ps(x1, 1);
|
Chris@10
|
131 __m128 l1 = _mm256_castps256_ps128(x1);
|
Chris@10
|
132 *(__m128 *)(x + 3*ovs) = h1;
|
Chris@10
|
133 *(__m128 *)(x + 2*ovs) = h0;
|
Chris@10
|
134 *(__m128 *)(x + 1*ovs) = l1;
|
Chris@10
|
135 *(__m128 *)(x + 0*ovs) = l0;
|
Chris@10
|
136 }
|
Chris@10
|
137
|
Chris@10
|
138 #define STM4(x, v, ovs, aligned_like) /* no-op */
|
Chris@10
|
139 #define STN4(x, v0, v1, v2, v3, ovs) \
|
Chris@10
|
140 { \
|
Chris@10
|
141 V xxx0, xxx1, xxx2, xxx3; \
|
Chris@10
|
142 V yyy0, yyy1, yyy2, yyy3; \
|
Chris@10
|
143 xxx0 = _mm256_unpacklo_ps(v0, v2); \
|
Chris@10
|
144 xxx1 = _mm256_unpackhi_ps(v0, v2); \
|
Chris@10
|
145 xxx2 = _mm256_unpacklo_ps(v1, v3); \
|
Chris@10
|
146 xxx3 = _mm256_unpackhi_ps(v1, v3); \
|
Chris@10
|
147 yyy0 = _mm256_unpacklo_ps(xxx0, xxx2); \
|
Chris@10
|
148 yyy1 = _mm256_unpackhi_ps(xxx0, xxx2); \
|
Chris@10
|
149 yyy2 = _mm256_unpacklo_ps(xxx1, xxx3); \
|
Chris@10
|
150 yyy3 = _mm256_unpackhi_ps(xxx1, xxx3); \
|
Chris@10
|
151 *(__m128 *)(x + 0 * ovs) = _mm256_castps256_ps128(yyy0); \
|
Chris@10
|
152 *(__m128 *)(x + 4 * ovs) = _mm256_extractf128_ps(yyy0, 1); \
|
Chris@10
|
153 *(__m128 *)(x + 1 * ovs) = _mm256_castps256_ps128(yyy1); \
|
Chris@10
|
154 *(__m128 *)(x + 5 * ovs) = _mm256_extractf128_ps(yyy1, 1); \
|
Chris@10
|
155 *(__m128 *)(x + 2 * ovs) = _mm256_castps256_ps128(yyy2); \
|
Chris@10
|
156 *(__m128 *)(x + 6 * ovs) = _mm256_extractf128_ps(yyy2, 1); \
|
Chris@10
|
157 *(__m128 *)(x + 3 * ovs) = _mm256_castps256_ps128(yyy3); \
|
Chris@10
|
158 *(__m128 *)(x + 7 * ovs) = _mm256_extractf128_ps(yyy3, 1); \
|
Chris@10
|
159 }
|
Chris@10
|
160
|
Chris@10
|
161 #else
|
Chris@10
|
162 static inline __m128d VMOVAPD_LD(const R *x)
|
Chris@10
|
163 {
|
Chris@10
|
164 /* gcc-4.6 miscompiles the combination _mm256_castpd128_pd256(VMOVAPD_LD(x))
|
Chris@10
|
165 into a 256-bit vmovapd, which requires 32-byte aligment instead of
|
Chris@10
|
166 16-byte alignment.
|
Chris@10
|
167
|
Chris@10
|
168 Force the use of vmovapd via asm until compilers stabilize.
|
Chris@10
|
169 */
|
Chris@10
|
170 #if defined(__GNUC__)
|
Chris@10
|
171 __m128d var;
|
Chris@10
|
172 __asm__("vmovapd %1, %0\n" : "=x"(var) : "m"(x[0]));
|
Chris@10
|
173 return var;
|
Chris@10
|
174 #else
|
Chris@10
|
175 return *(const __m128d *)x;
|
Chris@10
|
176 #endif
|
Chris@10
|
177 }
|
Chris@10
|
178
|
Chris@10
|
179 static inline V LD(const R *x, INT ivs, const R *aligned_like)
|
Chris@10
|
180 {
|
Chris@10
|
181 V var;
|
Chris@10
|
182 (void)aligned_like; /* UNUSED */
|
Chris@10
|
183 var = _mm256_castpd128_pd256(VMOVAPD_LD(x));
|
Chris@10
|
184 var = _mm256_insertf128_pd(var, *(const __m128d *)(x+ivs), 1);
|
Chris@10
|
185 return var;
|
Chris@10
|
186 }
|
Chris@10
|
187
|
Chris@10
|
188 static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
|
Chris@10
|
189 {
|
Chris@10
|
190 (void)aligned_like; /* UNUSED */
|
Chris@10
|
191 /* WARNING: the extra_iter hack depends upon the store of the low
|
Chris@10
|
192 part occurring after the store of the high part */
|
Chris@10
|
193 *(__m128d *)(x + ovs) = _mm256_extractf128_pd(v, 1);
|
Chris@10
|
194 *(__m128d *)x = _mm256_castpd256_pd128(v);
|
Chris@10
|
195 }
|
Chris@10
|
196
|
Chris@10
|
197
|
Chris@10
|
198 #define STM2 ST
|
Chris@10
|
199 #define STN2(x, v0, v1, ovs) /* nop */
|
Chris@10
|
200 #define STM4(x, v, ovs, aligned_like) /* no-op */
|
Chris@10
|
201
|
Chris@10
|
202 /* STN4 is a macro, not a function, thanks to Visual C++ developers
|
Chris@10
|
203 deciding "it would be infrequent that people would want to pass more
|
Chris@10
|
204 than 3 [__m128 parameters] by value." Even though the comment
|
Chris@10
|
205 was made about __m128 parameters, it appears to apply to __m256
|
Chris@10
|
206 parameters as well. */
|
Chris@10
|
207 #define STN4(x, v0, v1, v2, v3, ovs) \
|
Chris@10
|
208 { \
|
Chris@10
|
209 V xxx0, xxx1, xxx2, xxx3; \
|
Chris@10
|
210 xxx0 = _mm256_unpacklo_pd(v0, v1); \
|
Chris@10
|
211 xxx1 = _mm256_unpackhi_pd(v0, v1); \
|
Chris@10
|
212 xxx2 = _mm256_unpacklo_pd(v2, v3); \
|
Chris@10
|
213 xxx3 = _mm256_unpackhi_pd(v2, v3); \
|
Chris@10
|
214 STA(x, _mm256_permute2f128_pd(xxx0, xxx2, 0x20), 0, 0); \
|
Chris@10
|
215 STA(x + ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x20), 0, 0); \
|
Chris@10
|
216 STA(x + 2 * ovs, _mm256_permute2f128_pd(xxx0, xxx2, 0x31), 0, 0); \
|
Chris@10
|
217 STA(x + 3 * ovs, _mm256_permute2f128_pd(xxx1, xxx3, 0x31), 0, 0); \
|
Chris@10
|
218 }
|
Chris@10
|
219 #endif
|
Chris@10
|
220
|
Chris@10
|
221 static inline V FLIP_RI(V x)
|
Chris@10
|
222 {
|
Chris@10
|
223 return VSHUF(x, x,
|
Chris@10
|
224 DS(SHUFVALD(1, 0),
|
Chris@10
|
225 SHUFVALS(1, 0, 3, 2)));
|
Chris@10
|
226 }
|
Chris@10
|
227
|
Chris@10
|
228 static inline V VCONJ(V x)
|
Chris@10
|
229 {
|
Chris@10
|
230 V pmpm = VLIT(-0.0, 0.0);
|
Chris@10
|
231 return VXOR(pmpm, x);
|
Chris@10
|
232 }
|
Chris@10
|
233
|
Chris@10
|
234 static inline V VBYI(V x)
|
Chris@10
|
235 {
|
Chris@10
|
236 return FLIP_RI(VCONJ(x));
|
Chris@10
|
237 }
|
Chris@10
|
238
|
Chris@10
|
239 /* FMA support */
|
Chris@10
|
240 #define VFMA(a, b, c) VADD(c, VMUL(a, b))
|
Chris@10
|
241 #define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
|
Chris@10
|
242 #define VFMS(a, b, c) VSUB(VMUL(a, b), c)
|
Chris@10
|
243 #define VFMAI(b, c) VADD(c, VBYI(b))
|
Chris@10
|
244 #define VFNMSI(b, c) VSUB(c, VBYI(b))
|
Chris@10
|
245 #define VFMACONJ(b,c) VADD(VCONJ(b),c)
|
Chris@10
|
246 #define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
|
Chris@10
|
247 #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
|
Chris@10
|
248
|
Chris@10
|
249 static inline V VZMUL(V tx, V sr)
|
Chris@10
|
250 {
|
Chris@10
|
251 V tr = VDUPL(tx);
|
Chris@10
|
252 V ti = VDUPH(tx);
|
Chris@10
|
253 tr = VMUL(sr, tr);
|
Chris@10
|
254 sr = VBYI(sr);
|
Chris@10
|
255 return VFMA(ti, sr, tr);
|
Chris@10
|
256 }
|
Chris@10
|
257
|
Chris@10
|
258 static inline V VZMULJ(V tx, V sr)
|
Chris@10
|
259 {
|
Chris@10
|
260 V tr = VDUPL(tx);
|
Chris@10
|
261 V ti = VDUPH(tx);
|
Chris@10
|
262 tr = VMUL(sr, tr);
|
Chris@10
|
263 sr = VBYI(sr);
|
Chris@10
|
264 return VFNMS(ti, sr, tr);
|
Chris@10
|
265 }
|
Chris@10
|
266
|
Chris@10
|
267 static inline V VZMULI(V tx, V sr)
|
Chris@10
|
268 {
|
Chris@10
|
269 V tr = VDUPL(tx);
|
Chris@10
|
270 V ti = VDUPH(tx);
|
Chris@10
|
271 ti = VMUL(ti, sr);
|
Chris@10
|
272 sr = VBYI(sr);
|
Chris@10
|
273 return VFMS(tr, sr, ti);
|
Chris@10
|
274 }
|
Chris@10
|
275
|
Chris@10
|
276 static inline V VZMULIJ(V tx, V sr)
|
Chris@10
|
277 {
|
Chris@10
|
278 V tr = VDUPL(tx);
|
Chris@10
|
279 V ti = VDUPH(tx);
|
Chris@10
|
280 ti = VMUL(ti, sr);
|
Chris@10
|
281 sr = VBYI(sr);
|
Chris@10
|
282 return VFMA(tr, sr, ti);
|
Chris@10
|
283 }
|
Chris@10
|
284
|
Chris@10
|
285 /* twiddle storage #1: compact, slower */
|
Chris@10
|
286 #ifdef FFTW_SINGLE
|
Chris@10
|
287 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
|
Chris@10
|
288 #else
|
Chris@10
|
289 # define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
|
Chris@10
|
290 #endif
|
Chris@10
|
291 #define TWVL1 (VL)
|
Chris@10
|
292
|
Chris@10
|
293 static inline V BYTW1(const R *t, V sr)
|
Chris@10
|
294 {
|
Chris@10
|
295 return VZMUL(LDA(t, 2, t), sr);
|
Chris@10
|
296 }
|
Chris@10
|
297
|
Chris@10
|
298 static inline V BYTWJ1(const R *t, V sr)
|
Chris@10
|
299 {
|
Chris@10
|
300 return VZMULJ(LDA(t, 2, t), sr);
|
Chris@10
|
301 }
|
Chris@10
|
302
|
Chris@10
|
303 /* twiddle storage #2: twice the space, faster (when in cache) */
|
Chris@10
|
304 #ifdef FFTW_SINGLE
|
Chris@10
|
305 # define VTW2(v,x) \
|
Chris@10
|
306 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
|
Chris@10
|
307 {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
|
Chris@10
|
308 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
|
Chris@10
|
309 {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}
|
Chris@10
|
310 #else
|
Chris@10
|
311 # define VTW2(v,x) \
|
Chris@10
|
312 {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
|
Chris@10
|
313 {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
|
Chris@10
|
314 #endif
|
Chris@10
|
315 #define TWVL2 (2 * VL)
|
Chris@10
|
316
|
Chris@10
|
317 static inline V BYTW2(const R *t, V sr)
|
Chris@10
|
318 {
|
Chris@10
|
319 const V *twp = (const V *)t;
|
Chris@10
|
320 V si = FLIP_RI(sr);
|
Chris@10
|
321 V tr = twp[0], ti = twp[1];
|
Chris@10
|
322 return VFMA(tr, sr, VMUL(ti, si));
|
Chris@10
|
323 }
|
Chris@10
|
324
|
Chris@10
|
325 static inline V BYTWJ2(const R *t, V sr)
|
Chris@10
|
326 {
|
Chris@10
|
327 const V *twp = (const V *)t;
|
Chris@10
|
328 V si = FLIP_RI(sr);
|
Chris@10
|
329 V tr = twp[0], ti = twp[1];
|
Chris@10
|
330 return VFNMS(ti, si, VMUL(tr, sr));
|
Chris@10
|
331 }
|
Chris@10
|
332
|
Chris@10
|
333 /* twiddle storage #3 */
|
Chris@10
|
334 #define VTW3 VTW1
|
Chris@10
|
335 #define TWVL3 TWVL1
|
Chris@10
|
336
|
Chris@10
|
337 /* twiddle storage for split arrays */
|
Chris@10
|
338 #ifdef FFTW_SINGLE
|
Chris@10
|
339 # define VTWS(v,x) \
|
Chris@10
|
340 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
|
Chris@10
|
341 {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \
|
Chris@10
|
342 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \
|
Chris@10
|
343 {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x}
|
Chris@10
|
344 #else
|
Chris@10
|
345 # define VTWS(v,x) \
|
Chris@10
|
346 {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
|
Chris@10
|
347 {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
|
Chris@10
|
348 #endif
|
Chris@10
|
349 #define TWVLS (2 * VL)
|
Chris@10
|
350
|
Chris@10
|
351
|
Chris@10
|
352 /* Use VZEROUPPER to avoid the penalty of switching from AVX to SSE.
|
Chris@10
|
353 See Intel Optimization Manual (April 2011, version 248966), Section
|
Chris@10
|
354 11.3 */
|
Chris@10
|
355 #define VLEAVE _mm256_zeroupper
|
Chris@10
|
356
|
Chris@10
|
357 #include "simd-common.h"
|