| Chris@10 | 1 /* | 
| Chris@10 | 2  * Copyright (c) 2003, 2007-11 Matteo Frigo | 
| Chris@10 | 3  * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology | 
| Chris@10 | 4  * | 
| Chris@10 | 5  * This program is free software; you can redistribute it and/or modify | 
| Chris@10 | 6  * it under the terms of the GNU General Public License as published by | 
| Chris@10 | 7  * the Free Software Foundation; either version 2 of the License, or | 
| Chris@10 | 8  * (at your option) any later version. | 
| Chris@10 | 9  * | 
| Chris@10 | 10  * This program is distributed in the hope that it will be useful, | 
| Chris@10 | 11  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| Chris@10 | 12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| Chris@10 | 13  * GNU General Public License for more details. | 
| Chris@10 | 14  * | 
| Chris@10 | 15  * You should have received a copy of the GNU General Public License | 
| Chris@10 | 16  * along with this program; if not, write to the Free Software | 
| Chris@10 | 17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | 
| Chris@10 | 18  * | 
| Chris@10 | 19  */ | 
| Chris@10 | 20 | 
| Chris@10 | 21 | 
| Chris@10 | 22 /* Do a RODFT00 problem via an R2HC problem, with some pre/post-processing. | 
| Chris@10 | 23 | 
| Chris@10 | 24    This code uses the trick from FFTPACK, also documented in a similar | 
| Chris@10 | 25    form by Numerical Recipes.  Unfortunately, this algorithm seems to | 
| Chris@10 | 26    have intrinsic numerical problems (similar to those in | 
| Chris@10 | 27    reodft11e-r2hc.c), possibly due to the fact that it multiplies its | 
| Chris@10 | 28    input by a sine, causing a loss of precision near the zero.  For | 
| Chris@10 | 29    transforms of 16k points, it has already lost three or four decimal | 
| Chris@10 | 30    places of accuracy, which we deem unacceptable. | 
| Chris@10 | 31 | 
| Chris@10 | 32    So, we have abandoned this algorithm in favor of the one in | 
| Chris@10 | 33    rodft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed. | 
| Chris@10 | 34    The only other alternative in the literature that does not have | 
| Chris@10 | 35    similar numerical difficulties seems to be the direct adaptation of | 
| Chris@10 | 36    the Cooley-Tukey decomposition for antisymmetric data, but this | 
| Chris@10 | 37    would require a whole new set of codelets and it's not clear that | 
| Chris@10 | 38    it's worth it at this point.  However, we did implement the latter | 
| Chris@10 | 39    algorithm for the specific case of odd n (logically adapting the | 
| Chris@10 | 40    split-radix algorithm); see reodft00e-splitradix.c. */ | 
| Chris@10 | 41 | 
| Chris@10 | 42 #include "reodft.h" | 
| Chris@10 | 43 | 
| Chris@10 | 44 typedef struct { | 
| Chris@10 | 45      solver super; | 
| Chris@10 | 46 } S; | 
| Chris@10 | 47 | 
| Chris@10 | 48 typedef struct { | 
| Chris@10 | 49      plan_rdft super; | 
| Chris@10 | 50      plan *cld; | 
| Chris@10 | 51      twid *td; | 
| Chris@10 | 52      INT is, os; | 
| Chris@10 | 53      INT n; | 
| Chris@10 | 54      INT vl; | 
| Chris@10 | 55      INT ivs, ovs; | 
| Chris@10 | 56 } P; | 
| Chris@10 | 57 | 
| Chris@10 | 58 static void apply(const plan *ego_, R *I, R *O) | 
| Chris@10 | 59 { | 
| Chris@10 | 60      const P *ego = (const P *) ego_; | 
| Chris@10 | 61      INT is = ego->is, os = ego->os; | 
| Chris@10 | 62      INT i, n = ego->n; | 
| Chris@10 | 63      INT iv, vl = ego->vl; | 
| Chris@10 | 64      INT ivs = ego->ivs, ovs = ego->ovs; | 
| Chris@10 | 65      R *W = ego->td->W; | 
| Chris@10 | 66      R *buf; | 
| Chris@10 | 67 | 
| Chris@10 | 68      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | 
| Chris@10 | 69 | 
| Chris@10 | 70      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { | 
| Chris@10 | 71 	  buf[0] = 0; | 
| Chris@10 | 72 	  for (i = 1; i < n - i; ++i) { | 
| Chris@10 | 73 	       E a, b, apb, amb; | 
| Chris@10 | 74 	       a = I[is * (i - 1)]; | 
| Chris@10 | 75 	       b = I[is * ((n - i) - 1)]; | 
| Chris@10 | 76 	       apb =  K(2.0) * W[i] * (a + b); | 
| Chris@10 | 77 	       amb = (a - b); | 
| Chris@10 | 78 	       buf[i] = apb + amb; | 
| Chris@10 | 79 	       buf[n - i] = apb - amb; | 
| Chris@10 | 80 	  } | 
| Chris@10 | 81 	  if (i == n - i) { | 
| Chris@10 | 82 	       buf[i] = K(4.0) * I[is * (i - 1)]; | 
| Chris@10 | 83 	  } | 
| Chris@10 | 84 | 
| Chris@10 | 85 	  { | 
| Chris@10 | 86 	       plan_rdft *cld = (plan_rdft *) ego->cld; | 
| Chris@10 | 87 	       cld->apply((plan *) cld, buf, buf); | 
| Chris@10 | 88 	  } | 
| Chris@10 | 89 | 
| Chris@10 | 90 	  /* FIXME: use recursive/cascade summation for better stability? */ | 
| Chris@10 | 91 	  O[0] = buf[0] * 0.5; | 
| Chris@10 | 92 	  for (i = 1; i + i < n - 1; ++i) { | 
| Chris@10 | 93 	       INT k = i + i; | 
| Chris@10 | 94 	       O[os * (k - 1)] = -buf[n - i]; | 
| Chris@10 | 95 	       O[os * k] = O[os * (k - 2)] + buf[i]; | 
| Chris@10 | 96 	  } | 
| Chris@10 | 97 	  if (i + i == n - 1) { | 
| Chris@10 | 98 	       O[os * (n - 2)] = -buf[n - i]; | 
| Chris@10 | 99 	  } | 
| Chris@10 | 100      } | 
| Chris@10 | 101 | 
| Chris@10 | 102      X(ifree)(buf); | 
| Chris@10 | 103 } | 
| Chris@10 | 104 | 
| Chris@10 | 105 static void awake(plan *ego_, enum wakefulness wakefulness) | 
| Chris@10 | 106 { | 
| Chris@10 | 107      P *ego = (P *) ego_; | 
| Chris@10 | 108      static const tw_instr rodft00e_tw[] = { | 
| Chris@10 | 109           { TW_SIN, 0, 1 }, | 
| Chris@10 | 110           { TW_NEXT, 1, 0 } | 
| Chris@10 | 111      }; | 
| Chris@10 | 112 | 
| Chris@10 | 113      X(plan_awake)(ego->cld, wakefulness); | 
| Chris@10 | 114 | 
| Chris@10 | 115      X(twiddle_awake)(wakefulness, | 
| Chris@10 | 116 		      &ego->td, rodft00e_tw, 2*ego->n, 1, (ego->n+1)/2); | 
| Chris@10 | 117 } | 
| Chris@10 | 118 | 
| Chris@10 | 119 static void destroy(plan *ego_) | 
| Chris@10 | 120 { | 
| Chris@10 | 121      P *ego = (P *) ego_; | 
| Chris@10 | 122      X(plan_destroy_internal)(ego->cld); | 
| Chris@10 | 123 } | 
| Chris@10 | 124 | 
| Chris@10 | 125 static void print(const plan *ego_, printer *p) | 
| Chris@10 | 126 { | 
| Chris@10 | 127      const P *ego = (const P *) ego_; | 
| Chris@10 | 128      p->print(p, "(rodft00e-r2hc-%D%v%(%p%))", ego->n - 1, ego->vl, ego->cld); | 
| Chris@10 | 129 } | 
| Chris@10 | 130 | 
| Chris@10 | 131 static int applicable0(const solver *ego_, const problem *p_) | 
| Chris@10 | 132 { | 
| Chris@10 | 133      const problem_rdft *p = (const problem_rdft *) p_; | 
| Chris@10 | 134      UNUSED(ego_); | 
| Chris@10 | 135 | 
| Chris@10 | 136      return (1 | 
| Chris@10 | 137 	     && p->sz->rnk == 1 | 
| Chris@10 | 138 	     && p->vecsz->rnk <= 1 | 
| Chris@10 | 139 	     && p->kind[0] == RODFT00 | 
| Chris@10 | 140 	  ); | 
| Chris@10 | 141 } | 
| Chris@10 | 142 | 
| Chris@10 | 143 static int applicable(const solver *ego, const problem *p, const planner *plnr) | 
| Chris@10 | 144 { | 
| Chris@10 | 145      return (!NO_SLOWP(plnr) && applicable0(ego, p)); | 
| Chris@10 | 146 } | 
| Chris@10 | 147 | 
| Chris@10 | 148 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) | 
| Chris@10 | 149 { | 
| Chris@10 | 150      P *pln; | 
| Chris@10 | 151      const problem_rdft *p; | 
| Chris@10 | 152      plan *cld; | 
| Chris@10 | 153      R *buf; | 
| Chris@10 | 154      INT n; | 
| Chris@10 | 155      opcnt ops; | 
| Chris@10 | 156 | 
| Chris@10 | 157      static const plan_adt padt = { | 
| Chris@10 | 158 	  X(rdft_solve), awake, print, destroy | 
| Chris@10 | 159      }; | 
| Chris@10 | 160 | 
| Chris@10 | 161      if (!applicable(ego_, p_, plnr)) | 
| Chris@10 | 162           return (plan *)0; | 
| Chris@10 | 163 | 
| Chris@10 | 164      p = (const problem_rdft *) p_; | 
| Chris@10 | 165 | 
| Chris@10 | 166      n = p->sz->dims[0].n + 1; | 
| Chris@10 | 167      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); | 
| Chris@10 | 168 | 
| Chris@10 | 169      cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), | 
| Chris@10 | 170                                                    X(mktensor_0d)(), | 
| Chris@10 | 171                                                    buf, buf, R2HC)); | 
| Chris@10 | 172      X(ifree)(buf); | 
| Chris@10 | 173      if (!cld) | 
| Chris@10 | 174           return (plan *)0; | 
| Chris@10 | 175 | 
| Chris@10 | 176      pln = MKPLAN_RDFT(P, &padt, apply); | 
| Chris@10 | 177 | 
| Chris@10 | 178      pln->n = n; | 
| Chris@10 | 179      pln->is = p->sz->dims[0].is; | 
| Chris@10 | 180      pln->os = p->sz->dims[0].os; | 
| Chris@10 | 181      pln->cld = cld; | 
| Chris@10 | 182      pln->td = 0; | 
| Chris@10 | 183 | 
| Chris@10 | 184      X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); | 
| Chris@10 | 185 | 
| Chris@10 | 186      X(ops_zero)(&ops); | 
| Chris@10 | 187      ops.other = 4 + (n-1)/2 * 5 + (n-2)/2 * 5; | 
| Chris@10 | 188      ops.add = (n-1)/2 * 4 + (n-2)/2 * 1; | 
| Chris@10 | 189      ops.mul = 1 + (n-1)/2 * 2; | 
| Chris@10 | 190      if (n % 2 == 0) | 
| Chris@10 | 191 	  ops.mul += 1; | 
| Chris@10 | 192 | 
| Chris@10 | 193      X(ops_zero)(&pln->super.super.ops); | 
| Chris@10 | 194      X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); | 
| Chris@10 | 195      X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); | 
| Chris@10 | 196 | 
| Chris@10 | 197      return &(pln->super.super); | 
| Chris@10 | 198 } | 
| Chris@10 | 199 | 
| Chris@10 | 200 /* constructor */ | 
| Chris@10 | 201 static solver *mksolver(void) | 
| Chris@10 | 202 { | 
| Chris@10 | 203      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; | 
| Chris@10 | 204      S *slv = MKSOLVER(S, &sadt); | 
| Chris@10 | 205      return &(slv->super); | 
| Chris@10 | 206 } | 
| Chris@10 | 207 | 
| Chris@10 | 208 void X(rodft00e_r2hc_register)(planner *p) | 
| Chris@10 | 209 { | 
| Chris@10 | 210      REGISTER_SOLVER(p, mksolver()); | 
| Chris@10 | 211 } |