annotate src/fftw-3.3.3/reodft/reodft11e-radix2.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 /* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems
Chris@10 23 of half the size, plus some pre/post-processing. Use a trick from:
Chris@10 24
Chris@10 25 Zhongde Wang, "On computing the discrete Fourier and cosine transforms,"
Chris@10 26 IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985).
Chris@10 27
Chris@10 28 to re-express as a pair of half-size REDFT01 (DCT-III) problems. Our
Chris@10 29 implementation looks quite a bit different from the algorithm described
Chris@10 30 in the paper because we combined the paper's pre/post-processing with
Chris@10 31 the pre/post-processing used to turn REDFT01 into R2HC. (Also, the
Chris@10 32 paper uses a DCT/DST pair, but we turn the DST into a DCT via the
Chris@10 33 usual reordering/sign-flip trick. We additionally combined a couple
Chris@10 34 of the matrices/transformations of the paper into a single pass.)
Chris@10 35
Chris@10 36 NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho
Chris@10 37 that turned out to have numerical problems; see reodft11e-r2hc.c.
Chris@10 38
Chris@10 39 (For odd sizes, see reodft11e-r2hc-odd.c.)
Chris@10 40 */
Chris@10 41
Chris@10 42 #include "reodft.h"
Chris@10 43
Chris@10 44 typedef struct {
Chris@10 45 solver super;
Chris@10 46 } S;
Chris@10 47
Chris@10 48 typedef struct {
Chris@10 49 plan_rdft super;
Chris@10 50 plan *cld;
Chris@10 51 twid *td, *td2;
Chris@10 52 INT is, os;
Chris@10 53 INT n;
Chris@10 54 INT vl;
Chris@10 55 INT ivs, ovs;
Chris@10 56 rdft_kind kind;
Chris@10 57 } P;
Chris@10 58
Chris@10 59 static void apply_re11(const plan *ego_, R *I, R *O)
Chris@10 60 {
Chris@10 61 const P *ego = (const P *) ego_;
Chris@10 62 INT is = ego->is, os = ego->os;
Chris@10 63 INT i, n = ego->n, n2 = n/2;
Chris@10 64 INT iv, vl = ego->vl;
Chris@10 65 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@10 66 R *W = ego->td->W;
Chris@10 67 R *W2;
Chris@10 68 R *buf;
Chris@10 69
Chris@10 70 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@10 71
Chris@10 72 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@10 73 buf[0] = K(2.0) * I[0];
Chris@10 74 buf[n2] = K(2.0) * I[is * (n - 1)];
Chris@10 75 for (i = 1; i + i < n2; ++i) {
Chris@10 76 INT k = i + i;
Chris@10 77 E a, b, a2, b2;
Chris@10 78 {
Chris@10 79 E u, v;
Chris@10 80 u = I[is * (k - 1)];
Chris@10 81 v = I[is * k];
Chris@10 82 a = u + v;
Chris@10 83 b2 = u - v;
Chris@10 84 }
Chris@10 85 {
Chris@10 86 E u, v;
Chris@10 87 u = I[is * (n - k - 1)];
Chris@10 88 v = I[is * (n - k)];
Chris@10 89 b = u + v;
Chris@10 90 a2 = u - v;
Chris@10 91 }
Chris@10 92 {
Chris@10 93 E wa, wb;
Chris@10 94 wa = W[2*i];
Chris@10 95 wb = W[2*i + 1];
Chris@10 96 {
Chris@10 97 E apb, amb;
Chris@10 98 apb = a + b;
Chris@10 99 amb = a - b;
Chris@10 100 buf[i] = wa * amb + wb * apb;
Chris@10 101 buf[n2 - i] = wa * apb - wb * amb;
Chris@10 102 }
Chris@10 103 {
Chris@10 104 E apb, amb;
Chris@10 105 apb = a2 + b2;
Chris@10 106 amb = a2 - b2;
Chris@10 107 buf[n2 + i] = wa * amb + wb * apb;
Chris@10 108 buf[n - i] = wa * apb - wb * amb;
Chris@10 109 }
Chris@10 110 }
Chris@10 111 }
Chris@10 112 if (i + i == n2) {
Chris@10 113 E u, v;
Chris@10 114 u = I[is * (n2 - 1)];
Chris@10 115 v = I[is * n2];
Chris@10 116 buf[i] = (u + v) * (W[2*i] * K(2.0));
Chris@10 117 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
Chris@10 118 }
Chris@10 119
Chris@10 120
Chris@10 121 /* child plan: two r2hc's of size n/2 */
Chris@10 122 {
Chris@10 123 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 124 cld->apply((plan *) cld, buf, buf);
Chris@10 125 }
Chris@10 126
Chris@10 127 W2 = ego->td2->W;
Chris@10 128 { /* i == 0 case */
Chris@10 129 E wa, wb;
Chris@10 130 E a, b;
Chris@10 131 wa = W2[0]; /* cos */
Chris@10 132 wb = W2[1]; /* sin */
Chris@10 133 a = buf[0];
Chris@10 134 b = buf[n2];
Chris@10 135 O[0] = wa * a + wb * b;
Chris@10 136 O[os * (n - 1)] = wb * a - wa * b;
Chris@10 137 }
Chris@10 138 W2 += 2;
Chris@10 139 for (i = 1; i + i < n2; ++i, W2 += 2) {
Chris@10 140 INT k;
Chris@10 141 E u, v, u2, v2;
Chris@10 142 u = buf[i];
Chris@10 143 v = buf[n2 - i];
Chris@10 144 u2 = buf[n2 + i];
Chris@10 145 v2 = buf[n - i];
Chris@10 146 k = (i + i) - 1;
Chris@10 147 {
Chris@10 148 E wa, wb;
Chris@10 149 E a, b;
Chris@10 150 wa = W2[0]; /* cos */
Chris@10 151 wb = W2[1]; /* sin */
Chris@10 152 a = u - v;
Chris@10 153 b = v2 - u2;
Chris@10 154 O[os * k] = wa * a + wb * b;
Chris@10 155 O[os * (n - 1 - k)] = wb * a - wa * b;
Chris@10 156 }
Chris@10 157 ++k;
Chris@10 158 W2 += 2;
Chris@10 159 {
Chris@10 160 E wa, wb;
Chris@10 161 E a, b;
Chris@10 162 wa = W2[0]; /* cos */
Chris@10 163 wb = W2[1]; /* sin */
Chris@10 164 a = u + v;
Chris@10 165 b = u2 + v2;
Chris@10 166 O[os * k] = wa * a + wb * b;
Chris@10 167 O[os * (n - 1 - k)] = wb * a - wa * b;
Chris@10 168 }
Chris@10 169 }
Chris@10 170 if (i + i == n2) {
Chris@10 171 INT k = (i + i) - 1;
Chris@10 172 E wa, wb;
Chris@10 173 E a, b;
Chris@10 174 wa = W2[0]; /* cos */
Chris@10 175 wb = W2[1]; /* sin */
Chris@10 176 a = buf[i];
Chris@10 177 b = buf[n2 + i];
Chris@10 178 O[os * k] = wa * a - wb * b;
Chris@10 179 O[os * (n - 1 - k)] = wb * a + wa * b;
Chris@10 180 }
Chris@10 181 }
Chris@10 182
Chris@10 183 X(ifree)(buf);
Chris@10 184 }
Chris@10 185
Chris@10 186 #if 0
Chris@10 187
Chris@10 188 /* This version of apply_re11 uses REDFT01 child plans, more similar
Chris@10 189 to the original paper by Z. Wang. We keep it around for reference
Chris@10 190 (it is simpler) and because it may become more efficient if we
Chris@10 191 ever implement REDFT01 codelets. */
Chris@10 192
Chris@10 193 static void apply_re11(const plan *ego_, R *I, R *O)
Chris@10 194 {
Chris@10 195 const P *ego = (const P *) ego_;
Chris@10 196 INT is = ego->is, os = ego->os;
Chris@10 197 INT i, n = ego->n;
Chris@10 198 INT iv, vl = ego->vl;
Chris@10 199 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@10 200 R *W;
Chris@10 201 R *buf;
Chris@10 202
Chris@10 203 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@10 204
Chris@10 205 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@10 206 buf[0] = K(2.0) * I[0];
Chris@10 207 buf[n/2] = K(2.0) * I[is * (n - 1)];
Chris@10 208 for (i = 1; i + i < n; ++i) {
Chris@10 209 INT k = i + i;
Chris@10 210 E a, b;
Chris@10 211 a = I[is * (k - 1)];
Chris@10 212 b = I[is * k];
Chris@10 213 buf[i] = a + b;
Chris@10 214 buf[n - i] = a - b;
Chris@10 215 }
Chris@10 216
Chris@10 217 /* child plan: two redft01's (DCT-III) */
Chris@10 218 {
Chris@10 219 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 220 cld->apply((plan *) cld, buf, buf);
Chris@10 221 }
Chris@10 222
Chris@10 223 W = ego->td2->W;
Chris@10 224 for (i = 0; i + 1 < n/2; ++i, W += 2) {
Chris@10 225 {
Chris@10 226 E wa, wb;
Chris@10 227 E a, b;
Chris@10 228 wa = W[0]; /* cos */
Chris@10 229 wb = W[1]; /* sin */
Chris@10 230 a = buf[i];
Chris@10 231 b = buf[n/2 + i];
Chris@10 232 O[os * i] = wa * a + wb * b;
Chris@10 233 O[os * (n - 1 - i)] = wb * a - wa * b;
Chris@10 234 }
Chris@10 235 ++i;
Chris@10 236 W += 2;
Chris@10 237 {
Chris@10 238 E wa, wb;
Chris@10 239 E a, b;
Chris@10 240 wa = W[0]; /* cos */
Chris@10 241 wb = W[1]; /* sin */
Chris@10 242 a = buf[i];
Chris@10 243 b = buf[n/2 + i];
Chris@10 244 O[os * i] = wa * a - wb * b;
Chris@10 245 O[os * (n - 1 - i)] = wb * a + wa * b;
Chris@10 246 }
Chris@10 247 }
Chris@10 248 if (i < n/2) {
Chris@10 249 E wa, wb;
Chris@10 250 E a, b;
Chris@10 251 wa = W[0]; /* cos */
Chris@10 252 wb = W[1]; /* sin */
Chris@10 253 a = buf[i];
Chris@10 254 b = buf[n/2 + i];
Chris@10 255 O[os * i] = wa * a + wb * b;
Chris@10 256 O[os * (n - 1 - i)] = wb * a - wa * b;
Chris@10 257 }
Chris@10 258 }
Chris@10 259
Chris@10 260 X(ifree)(buf);
Chris@10 261 }
Chris@10 262
Chris@10 263 #endif /* 0 */
Chris@10 264
Chris@10 265 /* like for rodft01, rodft11 is obtained from redft11 by
Chris@10 266 reversing the input and flipping the sign of every other output. */
Chris@10 267 static void apply_ro11(const plan *ego_, R *I, R *O)
Chris@10 268 {
Chris@10 269 const P *ego = (const P *) ego_;
Chris@10 270 INT is = ego->is, os = ego->os;
Chris@10 271 INT i, n = ego->n, n2 = n/2;
Chris@10 272 INT iv, vl = ego->vl;
Chris@10 273 INT ivs = ego->ivs, ovs = ego->ovs;
Chris@10 274 R *W = ego->td->W;
Chris@10 275 R *W2;
Chris@10 276 R *buf;
Chris@10 277
Chris@10 278 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@10 279
Chris@10 280 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
Chris@10 281 buf[0] = K(2.0) * I[is * (n - 1)];
Chris@10 282 buf[n2] = K(2.0) * I[0];
Chris@10 283 for (i = 1; i + i < n2; ++i) {
Chris@10 284 INT k = i + i;
Chris@10 285 E a, b, a2, b2;
Chris@10 286 {
Chris@10 287 E u, v;
Chris@10 288 u = I[is * (n - k)];
Chris@10 289 v = I[is * (n - 1 - k)];
Chris@10 290 a = u + v;
Chris@10 291 b2 = u - v;
Chris@10 292 }
Chris@10 293 {
Chris@10 294 E u, v;
Chris@10 295 u = I[is * (k)];
Chris@10 296 v = I[is * (k - 1)];
Chris@10 297 b = u + v;
Chris@10 298 a2 = u - v;
Chris@10 299 }
Chris@10 300 {
Chris@10 301 E wa, wb;
Chris@10 302 wa = W[2*i];
Chris@10 303 wb = W[2*i + 1];
Chris@10 304 {
Chris@10 305 E apb, amb;
Chris@10 306 apb = a + b;
Chris@10 307 amb = a - b;
Chris@10 308 buf[i] = wa * amb + wb * apb;
Chris@10 309 buf[n2 - i] = wa * apb - wb * amb;
Chris@10 310 }
Chris@10 311 {
Chris@10 312 E apb, amb;
Chris@10 313 apb = a2 + b2;
Chris@10 314 amb = a2 - b2;
Chris@10 315 buf[n2 + i] = wa * amb + wb * apb;
Chris@10 316 buf[n - i] = wa * apb - wb * amb;
Chris@10 317 }
Chris@10 318 }
Chris@10 319 }
Chris@10 320 if (i + i == n2) {
Chris@10 321 E u, v;
Chris@10 322 u = I[is * n2];
Chris@10 323 v = I[is * (n2 - 1)];
Chris@10 324 buf[i] = (u + v) * (W[2*i] * K(2.0));
Chris@10 325 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
Chris@10 326 }
Chris@10 327
Chris@10 328
Chris@10 329 /* child plan: two r2hc's of size n/2 */
Chris@10 330 {
Chris@10 331 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@10 332 cld->apply((plan *) cld, buf, buf);
Chris@10 333 }
Chris@10 334
Chris@10 335 W2 = ego->td2->W;
Chris@10 336 { /* i == 0 case */
Chris@10 337 E wa, wb;
Chris@10 338 E a, b;
Chris@10 339 wa = W2[0]; /* cos */
Chris@10 340 wb = W2[1]; /* sin */
Chris@10 341 a = buf[0];
Chris@10 342 b = buf[n2];
Chris@10 343 O[0] = wa * a + wb * b;
Chris@10 344 O[os * (n - 1)] = wa * b - wb * a;
Chris@10 345 }
Chris@10 346 W2 += 2;
Chris@10 347 for (i = 1; i + i < n2; ++i, W2 += 2) {
Chris@10 348 INT k;
Chris@10 349 E u, v, u2, v2;
Chris@10 350 u = buf[i];
Chris@10 351 v = buf[n2 - i];
Chris@10 352 u2 = buf[n2 + i];
Chris@10 353 v2 = buf[n - i];
Chris@10 354 k = (i + i) - 1;
Chris@10 355 {
Chris@10 356 E wa, wb;
Chris@10 357 E a, b;
Chris@10 358 wa = W2[0]; /* cos */
Chris@10 359 wb = W2[1]; /* sin */
Chris@10 360 a = v - u;
Chris@10 361 b = u2 - v2;
Chris@10 362 O[os * k] = wa * a + wb * b;
Chris@10 363 O[os * (n - 1 - k)] = wa * b - wb * a;
Chris@10 364 }
Chris@10 365 ++k;
Chris@10 366 W2 += 2;
Chris@10 367 {
Chris@10 368 E wa, wb;
Chris@10 369 E a, b;
Chris@10 370 wa = W2[0]; /* cos */
Chris@10 371 wb = W2[1]; /* sin */
Chris@10 372 a = u + v;
Chris@10 373 b = u2 + v2;
Chris@10 374 O[os * k] = wa * a + wb * b;
Chris@10 375 O[os * (n - 1 - k)] = wa * b - wb * a;
Chris@10 376 }
Chris@10 377 }
Chris@10 378 if (i + i == n2) {
Chris@10 379 INT k = (i + i) - 1;
Chris@10 380 E wa, wb;
Chris@10 381 E a, b;
Chris@10 382 wa = W2[0]; /* cos */
Chris@10 383 wb = W2[1]; /* sin */
Chris@10 384 a = buf[i];
Chris@10 385 b = buf[n2 + i];
Chris@10 386 O[os * k] = wb * b - wa * a;
Chris@10 387 O[os * (n - 1 - k)] = wa * b + wb * a;
Chris@10 388 }
Chris@10 389 }
Chris@10 390
Chris@10 391 X(ifree)(buf);
Chris@10 392 }
Chris@10 393
Chris@10 394 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@10 395 {
Chris@10 396 P *ego = (P *) ego_;
Chris@10 397 static const tw_instr reodft010e_tw[] = {
Chris@10 398 { TW_COS, 0, 1 },
Chris@10 399 { TW_SIN, 0, 1 },
Chris@10 400 { TW_NEXT, 1, 0 }
Chris@10 401 };
Chris@10 402 static const tw_instr reodft11e_tw[] = {
Chris@10 403 { TW_COS, 1, 1 },
Chris@10 404 { TW_SIN, 1, 1 },
Chris@10 405 { TW_NEXT, 2, 0 }
Chris@10 406 };
Chris@10 407
Chris@10 408 X(plan_awake)(ego->cld, wakefulness);
Chris@10 409
Chris@10 410 X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw,
Chris@10 411 2*ego->n, 1, ego->n/4+1);
Chris@10 412 X(twiddle_awake)(wakefulness, &ego->td2, reodft11e_tw,
Chris@10 413 8*ego->n, 1, ego->n);
Chris@10 414 }
Chris@10 415
Chris@10 416 static void destroy(plan *ego_)
Chris@10 417 {
Chris@10 418 P *ego = (P *) ego_;
Chris@10 419 X(plan_destroy_internal)(ego->cld);
Chris@10 420 }
Chris@10 421
Chris@10 422 static void print(const plan *ego_, printer *p)
Chris@10 423 {
Chris@10 424 const P *ego = (const P *) ego_;
Chris@10 425 p->print(p, "(%se-radix2-r2hc-%D%v%(%p%))",
Chris@10 426 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
Chris@10 427 }
Chris@10 428
Chris@10 429 static int applicable0(const solver *ego_, const problem *p_)
Chris@10 430 {
Chris@10 431 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 432 UNUSED(ego_);
Chris@10 433
Chris@10 434 return (1
Chris@10 435 && p->sz->rnk == 1
Chris@10 436 && p->vecsz->rnk <= 1
Chris@10 437 && p->sz->dims[0].n % 2 == 0
Chris@10 438 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
Chris@10 439 );
Chris@10 440 }
Chris@10 441
Chris@10 442 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@10 443 {
Chris@10 444 return (!NO_SLOWP(plnr) && applicable0(ego, p));
Chris@10 445 }
Chris@10 446
Chris@10 447 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 448 {
Chris@10 449 P *pln;
Chris@10 450 const problem_rdft *p;
Chris@10 451 plan *cld;
Chris@10 452 R *buf;
Chris@10 453 INT n;
Chris@10 454 opcnt ops;
Chris@10 455
Chris@10 456 static const plan_adt padt = {
Chris@10 457 X(rdft_solve), awake, print, destroy
Chris@10 458 };
Chris@10 459
Chris@10 460 if (!applicable(ego_, p_, plnr))
Chris@10 461 return (plan *)0;
Chris@10 462
Chris@10 463 p = (const problem_rdft *) p_;
Chris@10 464
Chris@10 465 n = p->sz->dims[0].n;
Chris@10 466 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
Chris@10 467
Chris@10 468 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1),
Chris@10 469 X(mktensor_1d)(2, n/2, n/2),
Chris@10 470 buf, buf, R2HC));
Chris@10 471 X(ifree)(buf);
Chris@10 472 if (!cld)
Chris@10 473 return (plan *)0;
Chris@10 474
Chris@10 475 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
Chris@10 476 pln->n = n;
Chris@10 477 pln->is = p->sz->dims[0].is;
Chris@10 478 pln->os = p->sz->dims[0].os;
Chris@10 479 pln->cld = cld;
Chris@10 480 pln->td = pln->td2 = 0;
Chris@10 481 pln->kind = p->kind[0];
Chris@10 482
Chris@10 483 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
Chris@10 484
Chris@10 485 X(ops_zero)(&ops);
Chris@10 486 ops.add = 2 + (n/2 - 1)/2 * 20;
Chris@10 487 ops.mul = 6 + (n/2 - 1)/2 * 16;
Chris@10 488 ops.other = 4*n + 2 + (n/2 - 1)/2 * 6;
Chris@10 489 if ((n/2) % 2 == 0) {
Chris@10 490 ops.add += 4;
Chris@10 491 ops.mul += 8;
Chris@10 492 ops.other += 4;
Chris@10 493 }
Chris@10 494
Chris@10 495 X(ops_zero)(&pln->super.super.ops);
Chris@10 496 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
Chris@10 497 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
Chris@10 498
Chris@10 499 return &(pln->super.super);
Chris@10 500 }
Chris@10 501
Chris@10 502 /* constructor */
Chris@10 503 static solver *mksolver(void)
Chris@10 504 {
Chris@10 505 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@10 506 S *slv = MKSOLVER(S, &sadt);
Chris@10 507 return &(slv->super);
Chris@10 508 }
Chris@10 509
Chris@10 510 void X(reodft11e_radix2_r2hc_register)(planner *p)
Chris@10 511 {
Chris@10 512 REGISTER_SOLVER(p, mksolver());
Chris@10 513 }