Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21
|
Chris@10
|
22 /* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems
|
Chris@10
|
23 of half the size, plus some pre/post-processing. Use a trick from:
|
Chris@10
|
24
|
Chris@10
|
25 Zhongde Wang, "On computing the discrete Fourier and cosine transforms,"
|
Chris@10
|
26 IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985).
|
Chris@10
|
27
|
Chris@10
|
28 to re-express as a pair of half-size REDFT01 (DCT-III) problems. Our
|
Chris@10
|
29 implementation looks quite a bit different from the algorithm described
|
Chris@10
|
30 in the paper because we combined the paper's pre/post-processing with
|
Chris@10
|
31 the pre/post-processing used to turn REDFT01 into R2HC. (Also, the
|
Chris@10
|
32 paper uses a DCT/DST pair, but we turn the DST into a DCT via the
|
Chris@10
|
33 usual reordering/sign-flip trick. We additionally combined a couple
|
Chris@10
|
34 of the matrices/transformations of the paper into a single pass.)
|
Chris@10
|
35
|
Chris@10
|
36 NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho
|
Chris@10
|
37 that turned out to have numerical problems; see reodft11e-r2hc.c.
|
Chris@10
|
38
|
Chris@10
|
39 (For odd sizes, see reodft11e-r2hc-odd.c.)
|
Chris@10
|
40 */
|
Chris@10
|
41
|
Chris@10
|
42 #include "reodft.h"
|
Chris@10
|
43
|
Chris@10
|
44 typedef struct {
|
Chris@10
|
45 solver super;
|
Chris@10
|
46 } S;
|
Chris@10
|
47
|
Chris@10
|
48 typedef struct {
|
Chris@10
|
49 plan_rdft super;
|
Chris@10
|
50 plan *cld;
|
Chris@10
|
51 twid *td, *td2;
|
Chris@10
|
52 INT is, os;
|
Chris@10
|
53 INT n;
|
Chris@10
|
54 INT vl;
|
Chris@10
|
55 INT ivs, ovs;
|
Chris@10
|
56 rdft_kind kind;
|
Chris@10
|
57 } P;
|
Chris@10
|
58
|
Chris@10
|
59 static void apply_re11(const plan *ego_, R *I, R *O)
|
Chris@10
|
60 {
|
Chris@10
|
61 const P *ego = (const P *) ego_;
|
Chris@10
|
62 INT is = ego->is, os = ego->os;
|
Chris@10
|
63 INT i, n = ego->n, n2 = n/2;
|
Chris@10
|
64 INT iv, vl = ego->vl;
|
Chris@10
|
65 INT ivs = ego->ivs, ovs = ego->ovs;
|
Chris@10
|
66 R *W = ego->td->W;
|
Chris@10
|
67 R *W2;
|
Chris@10
|
68 R *buf;
|
Chris@10
|
69
|
Chris@10
|
70 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
Chris@10
|
71
|
Chris@10
|
72 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
Chris@10
|
73 buf[0] = K(2.0) * I[0];
|
Chris@10
|
74 buf[n2] = K(2.0) * I[is * (n - 1)];
|
Chris@10
|
75 for (i = 1; i + i < n2; ++i) {
|
Chris@10
|
76 INT k = i + i;
|
Chris@10
|
77 E a, b, a2, b2;
|
Chris@10
|
78 {
|
Chris@10
|
79 E u, v;
|
Chris@10
|
80 u = I[is * (k - 1)];
|
Chris@10
|
81 v = I[is * k];
|
Chris@10
|
82 a = u + v;
|
Chris@10
|
83 b2 = u - v;
|
Chris@10
|
84 }
|
Chris@10
|
85 {
|
Chris@10
|
86 E u, v;
|
Chris@10
|
87 u = I[is * (n - k - 1)];
|
Chris@10
|
88 v = I[is * (n - k)];
|
Chris@10
|
89 b = u + v;
|
Chris@10
|
90 a2 = u - v;
|
Chris@10
|
91 }
|
Chris@10
|
92 {
|
Chris@10
|
93 E wa, wb;
|
Chris@10
|
94 wa = W[2*i];
|
Chris@10
|
95 wb = W[2*i + 1];
|
Chris@10
|
96 {
|
Chris@10
|
97 E apb, amb;
|
Chris@10
|
98 apb = a + b;
|
Chris@10
|
99 amb = a - b;
|
Chris@10
|
100 buf[i] = wa * amb + wb * apb;
|
Chris@10
|
101 buf[n2 - i] = wa * apb - wb * amb;
|
Chris@10
|
102 }
|
Chris@10
|
103 {
|
Chris@10
|
104 E apb, amb;
|
Chris@10
|
105 apb = a2 + b2;
|
Chris@10
|
106 amb = a2 - b2;
|
Chris@10
|
107 buf[n2 + i] = wa * amb + wb * apb;
|
Chris@10
|
108 buf[n - i] = wa * apb - wb * amb;
|
Chris@10
|
109 }
|
Chris@10
|
110 }
|
Chris@10
|
111 }
|
Chris@10
|
112 if (i + i == n2) {
|
Chris@10
|
113 E u, v;
|
Chris@10
|
114 u = I[is * (n2 - 1)];
|
Chris@10
|
115 v = I[is * n2];
|
Chris@10
|
116 buf[i] = (u + v) * (W[2*i] * K(2.0));
|
Chris@10
|
117 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
|
Chris@10
|
118 }
|
Chris@10
|
119
|
Chris@10
|
120
|
Chris@10
|
121 /* child plan: two r2hc's of size n/2 */
|
Chris@10
|
122 {
|
Chris@10
|
123 plan_rdft *cld = (plan_rdft *) ego->cld;
|
Chris@10
|
124 cld->apply((plan *) cld, buf, buf);
|
Chris@10
|
125 }
|
Chris@10
|
126
|
Chris@10
|
127 W2 = ego->td2->W;
|
Chris@10
|
128 { /* i == 0 case */
|
Chris@10
|
129 E wa, wb;
|
Chris@10
|
130 E a, b;
|
Chris@10
|
131 wa = W2[0]; /* cos */
|
Chris@10
|
132 wb = W2[1]; /* sin */
|
Chris@10
|
133 a = buf[0];
|
Chris@10
|
134 b = buf[n2];
|
Chris@10
|
135 O[0] = wa * a + wb * b;
|
Chris@10
|
136 O[os * (n - 1)] = wb * a - wa * b;
|
Chris@10
|
137 }
|
Chris@10
|
138 W2 += 2;
|
Chris@10
|
139 for (i = 1; i + i < n2; ++i, W2 += 2) {
|
Chris@10
|
140 INT k;
|
Chris@10
|
141 E u, v, u2, v2;
|
Chris@10
|
142 u = buf[i];
|
Chris@10
|
143 v = buf[n2 - i];
|
Chris@10
|
144 u2 = buf[n2 + i];
|
Chris@10
|
145 v2 = buf[n - i];
|
Chris@10
|
146 k = (i + i) - 1;
|
Chris@10
|
147 {
|
Chris@10
|
148 E wa, wb;
|
Chris@10
|
149 E a, b;
|
Chris@10
|
150 wa = W2[0]; /* cos */
|
Chris@10
|
151 wb = W2[1]; /* sin */
|
Chris@10
|
152 a = u - v;
|
Chris@10
|
153 b = v2 - u2;
|
Chris@10
|
154 O[os * k] = wa * a + wb * b;
|
Chris@10
|
155 O[os * (n - 1 - k)] = wb * a - wa * b;
|
Chris@10
|
156 }
|
Chris@10
|
157 ++k;
|
Chris@10
|
158 W2 += 2;
|
Chris@10
|
159 {
|
Chris@10
|
160 E wa, wb;
|
Chris@10
|
161 E a, b;
|
Chris@10
|
162 wa = W2[0]; /* cos */
|
Chris@10
|
163 wb = W2[1]; /* sin */
|
Chris@10
|
164 a = u + v;
|
Chris@10
|
165 b = u2 + v2;
|
Chris@10
|
166 O[os * k] = wa * a + wb * b;
|
Chris@10
|
167 O[os * (n - 1 - k)] = wb * a - wa * b;
|
Chris@10
|
168 }
|
Chris@10
|
169 }
|
Chris@10
|
170 if (i + i == n2) {
|
Chris@10
|
171 INT k = (i + i) - 1;
|
Chris@10
|
172 E wa, wb;
|
Chris@10
|
173 E a, b;
|
Chris@10
|
174 wa = W2[0]; /* cos */
|
Chris@10
|
175 wb = W2[1]; /* sin */
|
Chris@10
|
176 a = buf[i];
|
Chris@10
|
177 b = buf[n2 + i];
|
Chris@10
|
178 O[os * k] = wa * a - wb * b;
|
Chris@10
|
179 O[os * (n - 1 - k)] = wb * a + wa * b;
|
Chris@10
|
180 }
|
Chris@10
|
181 }
|
Chris@10
|
182
|
Chris@10
|
183 X(ifree)(buf);
|
Chris@10
|
184 }
|
Chris@10
|
185
|
Chris@10
|
186 #if 0
|
Chris@10
|
187
|
Chris@10
|
188 /* This version of apply_re11 uses REDFT01 child plans, more similar
|
Chris@10
|
189 to the original paper by Z. Wang. We keep it around for reference
|
Chris@10
|
190 (it is simpler) and because it may become more efficient if we
|
Chris@10
|
191 ever implement REDFT01 codelets. */
|
Chris@10
|
192
|
Chris@10
|
193 static void apply_re11(const plan *ego_, R *I, R *O)
|
Chris@10
|
194 {
|
Chris@10
|
195 const P *ego = (const P *) ego_;
|
Chris@10
|
196 INT is = ego->is, os = ego->os;
|
Chris@10
|
197 INT i, n = ego->n;
|
Chris@10
|
198 INT iv, vl = ego->vl;
|
Chris@10
|
199 INT ivs = ego->ivs, ovs = ego->ovs;
|
Chris@10
|
200 R *W;
|
Chris@10
|
201 R *buf;
|
Chris@10
|
202
|
Chris@10
|
203 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
Chris@10
|
204
|
Chris@10
|
205 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
Chris@10
|
206 buf[0] = K(2.0) * I[0];
|
Chris@10
|
207 buf[n/2] = K(2.0) * I[is * (n - 1)];
|
Chris@10
|
208 for (i = 1; i + i < n; ++i) {
|
Chris@10
|
209 INT k = i + i;
|
Chris@10
|
210 E a, b;
|
Chris@10
|
211 a = I[is * (k - 1)];
|
Chris@10
|
212 b = I[is * k];
|
Chris@10
|
213 buf[i] = a + b;
|
Chris@10
|
214 buf[n - i] = a - b;
|
Chris@10
|
215 }
|
Chris@10
|
216
|
Chris@10
|
217 /* child plan: two redft01's (DCT-III) */
|
Chris@10
|
218 {
|
Chris@10
|
219 plan_rdft *cld = (plan_rdft *) ego->cld;
|
Chris@10
|
220 cld->apply((plan *) cld, buf, buf);
|
Chris@10
|
221 }
|
Chris@10
|
222
|
Chris@10
|
223 W = ego->td2->W;
|
Chris@10
|
224 for (i = 0; i + 1 < n/2; ++i, W += 2) {
|
Chris@10
|
225 {
|
Chris@10
|
226 E wa, wb;
|
Chris@10
|
227 E a, b;
|
Chris@10
|
228 wa = W[0]; /* cos */
|
Chris@10
|
229 wb = W[1]; /* sin */
|
Chris@10
|
230 a = buf[i];
|
Chris@10
|
231 b = buf[n/2 + i];
|
Chris@10
|
232 O[os * i] = wa * a + wb * b;
|
Chris@10
|
233 O[os * (n - 1 - i)] = wb * a - wa * b;
|
Chris@10
|
234 }
|
Chris@10
|
235 ++i;
|
Chris@10
|
236 W += 2;
|
Chris@10
|
237 {
|
Chris@10
|
238 E wa, wb;
|
Chris@10
|
239 E a, b;
|
Chris@10
|
240 wa = W[0]; /* cos */
|
Chris@10
|
241 wb = W[1]; /* sin */
|
Chris@10
|
242 a = buf[i];
|
Chris@10
|
243 b = buf[n/2 + i];
|
Chris@10
|
244 O[os * i] = wa * a - wb * b;
|
Chris@10
|
245 O[os * (n - 1 - i)] = wb * a + wa * b;
|
Chris@10
|
246 }
|
Chris@10
|
247 }
|
Chris@10
|
248 if (i < n/2) {
|
Chris@10
|
249 E wa, wb;
|
Chris@10
|
250 E a, b;
|
Chris@10
|
251 wa = W[0]; /* cos */
|
Chris@10
|
252 wb = W[1]; /* sin */
|
Chris@10
|
253 a = buf[i];
|
Chris@10
|
254 b = buf[n/2 + i];
|
Chris@10
|
255 O[os * i] = wa * a + wb * b;
|
Chris@10
|
256 O[os * (n - 1 - i)] = wb * a - wa * b;
|
Chris@10
|
257 }
|
Chris@10
|
258 }
|
Chris@10
|
259
|
Chris@10
|
260 X(ifree)(buf);
|
Chris@10
|
261 }
|
Chris@10
|
262
|
Chris@10
|
263 #endif /* 0 */
|
Chris@10
|
264
|
Chris@10
|
265 /* like for rodft01, rodft11 is obtained from redft11 by
|
Chris@10
|
266 reversing the input and flipping the sign of every other output. */
|
Chris@10
|
267 static void apply_ro11(const plan *ego_, R *I, R *O)
|
Chris@10
|
268 {
|
Chris@10
|
269 const P *ego = (const P *) ego_;
|
Chris@10
|
270 INT is = ego->is, os = ego->os;
|
Chris@10
|
271 INT i, n = ego->n, n2 = n/2;
|
Chris@10
|
272 INT iv, vl = ego->vl;
|
Chris@10
|
273 INT ivs = ego->ivs, ovs = ego->ovs;
|
Chris@10
|
274 R *W = ego->td->W;
|
Chris@10
|
275 R *W2;
|
Chris@10
|
276 R *buf;
|
Chris@10
|
277
|
Chris@10
|
278 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
Chris@10
|
279
|
Chris@10
|
280 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
Chris@10
|
281 buf[0] = K(2.0) * I[is * (n - 1)];
|
Chris@10
|
282 buf[n2] = K(2.0) * I[0];
|
Chris@10
|
283 for (i = 1; i + i < n2; ++i) {
|
Chris@10
|
284 INT k = i + i;
|
Chris@10
|
285 E a, b, a2, b2;
|
Chris@10
|
286 {
|
Chris@10
|
287 E u, v;
|
Chris@10
|
288 u = I[is * (n - k)];
|
Chris@10
|
289 v = I[is * (n - 1 - k)];
|
Chris@10
|
290 a = u + v;
|
Chris@10
|
291 b2 = u - v;
|
Chris@10
|
292 }
|
Chris@10
|
293 {
|
Chris@10
|
294 E u, v;
|
Chris@10
|
295 u = I[is * (k)];
|
Chris@10
|
296 v = I[is * (k - 1)];
|
Chris@10
|
297 b = u + v;
|
Chris@10
|
298 a2 = u - v;
|
Chris@10
|
299 }
|
Chris@10
|
300 {
|
Chris@10
|
301 E wa, wb;
|
Chris@10
|
302 wa = W[2*i];
|
Chris@10
|
303 wb = W[2*i + 1];
|
Chris@10
|
304 {
|
Chris@10
|
305 E apb, amb;
|
Chris@10
|
306 apb = a + b;
|
Chris@10
|
307 amb = a - b;
|
Chris@10
|
308 buf[i] = wa * amb + wb * apb;
|
Chris@10
|
309 buf[n2 - i] = wa * apb - wb * amb;
|
Chris@10
|
310 }
|
Chris@10
|
311 {
|
Chris@10
|
312 E apb, amb;
|
Chris@10
|
313 apb = a2 + b2;
|
Chris@10
|
314 amb = a2 - b2;
|
Chris@10
|
315 buf[n2 + i] = wa * amb + wb * apb;
|
Chris@10
|
316 buf[n - i] = wa * apb - wb * amb;
|
Chris@10
|
317 }
|
Chris@10
|
318 }
|
Chris@10
|
319 }
|
Chris@10
|
320 if (i + i == n2) {
|
Chris@10
|
321 E u, v;
|
Chris@10
|
322 u = I[is * n2];
|
Chris@10
|
323 v = I[is * (n2 - 1)];
|
Chris@10
|
324 buf[i] = (u + v) * (W[2*i] * K(2.0));
|
Chris@10
|
325 buf[n - i] = (u - v) * (W[2*i] * K(2.0));
|
Chris@10
|
326 }
|
Chris@10
|
327
|
Chris@10
|
328
|
Chris@10
|
329 /* child plan: two r2hc's of size n/2 */
|
Chris@10
|
330 {
|
Chris@10
|
331 plan_rdft *cld = (plan_rdft *) ego->cld;
|
Chris@10
|
332 cld->apply((plan *) cld, buf, buf);
|
Chris@10
|
333 }
|
Chris@10
|
334
|
Chris@10
|
335 W2 = ego->td2->W;
|
Chris@10
|
336 { /* i == 0 case */
|
Chris@10
|
337 E wa, wb;
|
Chris@10
|
338 E a, b;
|
Chris@10
|
339 wa = W2[0]; /* cos */
|
Chris@10
|
340 wb = W2[1]; /* sin */
|
Chris@10
|
341 a = buf[0];
|
Chris@10
|
342 b = buf[n2];
|
Chris@10
|
343 O[0] = wa * a + wb * b;
|
Chris@10
|
344 O[os * (n - 1)] = wa * b - wb * a;
|
Chris@10
|
345 }
|
Chris@10
|
346 W2 += 2;
|
Chris@10
|
347 for (i = 1; i + i < n2; ++i, W2 += 2) {
|
Chris@10
|
348 INT k;
|
Chris@10
|
349 E u, v, u2, v2;
|
Chris@10
|
350 u = buf[i];
|
Chris@10
|
351 v = buf[n2 - i];
|
Chris@10
|
352 u2 = buf[n2 + i];
|
Chris@10
|
353 v2 = buf[n - i];
|
Chris@10
|
354 k = (i + i) - 1;
|
Chris@10
|
355 {
|
Chris@10
|
356 E wa, wb;
|
Chris@10
|
357 E a, b;
|
Chris@10
|
358 wa = W2[0]; /* cos */
|
Chris@10
|
359 wb = W2[1]; /* sin */
|
Chris@10
|
360 a = v - u;
|
Chris@10
|
361 b = u2 - v2;
|
Chris@10
|
362 O[os * k] = wa * a + wb * b;
|
Chris@10
|
363 O[os * (n - 1 - k)] = wa * b - wb * a;
|
Chris@10
|
364 }
|
Chris@10
|
365 ++k;
|
Chris@10
|
366 W2 += 2;
|
Chris@10
|
367 {
|
Chris@10
|
368 E wa, wb;
|
Chris@10
|
369 E a, b;
|
Chris@10
|
370 wa = W2[0]; /* cos */
|
Chris@10
|
371 wb = W2[1]; /* sin */
|
Chris@10
|
372 a = u + v;
|
Chris@10
|
373 b = u2 + v2;
|
Chris@10
|
374 O[os * k] = wa * a + wb * b;
|
Chris@10
|
375 O[os * (n - 1 - k)] = wa * b - wb * a;
|
Chris@10
|
376 }
|
Chris@10
|
377 }
|
Chris@10
|
378 if (i + i == n2) {
|
Chris@10
|
379 INT k = (i + i) - 1;
|
Chris@10
|
380 E wa, wb;
|
Chris@10
|
381 E a, b;
|
Chris@10
|
382 wa = W2[0]; /* cos */
|
Chris@10
|
383 wb = W2[1]; /* sin */
|
Chris@10
|
384 a = buf[i];
|
Chris@10
|
385 b = buf[n2 + i];
|
Chris@10
|
386 O[os * k] = wb * b - wa * a;
|
Chris@10
|
387 O[os * (n - 1 - k)] = wa * b + wb * a;
|
Chris@10
|
388 }
|
Chris@10
|
389 }
|
Chris@10
|
390
|
Chris@10
|
391 X(ifree)(buf);
|
Chris@10
|
392 }
|
Chris@10
|
393
|
Chris@10
|
394 static void awake(plan *ego_, enum wakefulness wakefulness)
|
Chris@10
|
395 {
|
Chris@10
|
396 P *ego = (P *) ego_;
|
Chris@10
|
397 static const tw_instr reodft010e_tw[] = {
|
Chris@10
|
398 { TW_COS, 0, 1 },
|
Chris@10
|
399 { TW_SIN, 0, 1 },
|
Chris@10
|
400 { TW_NEXT, 1, 0 }
|
Chris@10
|
401 };
|
Chris@10
|
402 static const tw_instr reodft11e_tw[] = {
|
Chris@10
|
403 { TW_COS, 1, 1 },
|
Chris@10
|
404 { TW_SIN, 1, 1 },
|
Chris@10
|
405 { TW_NEXT, 2, 0 }
|
Chris@10
|
406 };
|
Chris@10
|
407
|
Chris@10
|
408 X(plan_awake)(ego->cld, wakefulness);
|
Chris@10
|
409
|
Chris@10
|
410 X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw,
|
Chris@10
|
411 2*ego->n, 1, ego->n/4+1);
|
Chris@10
|
412 X(twiddle_awake)(wakefulness, &ego->td2, reodft11e_tw,
|
Chris@10
|
413 8*ego->n, 1, ego->n);
|
Chris@10
|
414 }
|
Chris@10
|
415
|
Chris@10
|
416 static void destroy(plan *ego_)
|
Chris@10
|
417 {
|
Chris@10
|
418 P *ego = (P *) ego_;
|
Chris@10
|
419 X(plan_destroy_internal)(ego->cld);
|
Chris@10
|
420 }
|
Chris@10
|
421
|
Chris@10
|
422 static void print(const plan *ego_, printer *p)
|
Chris@10
|
423 {
|
Chris@10
|
424 const P *ego = (const P *) ego_;
|
Chris@10
|
425 p->print(p, "(%se-radix2-r2hc-%D%v%(%p%))",
|
Chris@10
|
426 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
|
Chris@10
|
427 }
|
Chris@10
|
428
|
Chris@10
|
429 static int applicable0(const solver *ego_, const problem *p_)
|
Chris@10
|
430 {
|
Chris@10
|
431 const problem_rdft *p = (const problem_rdft *) p_;
|
Chris@10
|
432 UNUSED(ego_);
|
Chris@10
|
433
|
Chris@10
|
434 return (1
|
Chris@10
|
435 && p->sz->rnk == 1
|
Chris@10
|
436 && p->vecsz->rnk <= 1
|
Chris@10
|
437 && p->sz->dims[0].n % 2 == 0
|
Chris@10
|
438 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
|
Chris@10
|
439 );
|
Chris@10
|
440 }
|
Chris@10
|
441
|
Chris@10
|
442 static int applicable(const solver *ego, const problem *p, const planner *plnr)
|
Chris@10
|
443 {
|
Chris@10
|
444 return (!NO_SLOWP(plnr) && applicable0(ego, p));
|
Chris@10
|
445 }
|
Chris@10
|
446
|
Chris@10
|
447 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
Chris@10
|
448 {
|
Chris@10
|
449 P *pln;
|
Chris@10
|
450 const problem_rdft *p;
|
Chris@10
|
451 plan *cld;
|
Chris@10
|
452 R *buf;
|
Chris@10
|
453 INT n;
|
Chris@10
|
454 opcnt ops;
|
Chris@10
|
455
|
Chris@10
|
456 static const plan_adt padt = {
|
Chris@10
|
457 X(rdft_solve), awake, print, destroy
|
Chris@10
|
458 };
|
Chris@10
|
459
|
Chris@10
|
460 if (!applicable(ego_, p_, plnr))
|
Chris@10
|
461 return (plan *)0;
|
Chris@10
|
462
|
Chris@10
|
463 p = (const problem_rdft *) p_;
|
Chris@10
|
464
|
Chris@10
|
465 n = p->sz->dims[0].n;
|
Chris@10
|
466 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
Chris@10
|
467
|
Chris@10
|
468 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1),
|
Chris@10
|
469 X(mktensor_1d)(2, n/2, n/2),
|
Chris@10
|
470 buf, buf, R2HC));
|
Chris@10
|
471 X(ifree)(buf);
|
Chris@10
|
472 if (!cld)
|
Chris@10
|
473 return (plan *)0;
|
Chris@10
|
474
|
Chris@10
|
475 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
|
Chris@10
|
476 pln->n = n;
|
Chris@10
|
477 pln->is = p->sz->dims[0].is;
|
Chris@10
|
478 pln->os = p->sz->dims[0].os;
|
Chris@10
|
479 pln->cld = cld;
|
Chris@10
|
480 pln->td = pln->td2 = 0;
|
Chris@10
|
481 pln->kind = p->kind[0];
|
Chris@10
|
482
|
Chris@10
|
483 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
|
Chris@10
|
484
|
Chris@10
|
485 X(ops_zero)(&ops);
|
Chris@10
|
486 ops.add = 2 + (n/2 - 1)/2 * 20;
|
Chris@10
|
487 ops.mul = 6 + (n/2 - 1)/2 * 16;
|
Chris@10
|
488 ops.other = 4*n + 2 + (n/2 - 1)/2 * 6;
|
Chris@10
|
489 if ((n/2) % 2 == 0) {
|
Chris@10
|
490 ops.add += 4;
|
Chris@10
|
491 ops.mul += 8;
|
Chris@10
|
492 ops.other += 4;
|
Chris@10
|
493 }
|
Chris@10
|
494
|
Chris@10
|
495 X(ops_zero)(&pln->super.super.ops);
|
Chris@10
|
496 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
|
Chris@10
|
497 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
|
Chris@10
|
498
|
Chris@10
|
499 return &(pln->super.super);
|
Chris@10
|
500 }
|
Chris@10
|
501
|
Chris@10
|
502 /* constructor */
|
Chris@10
|
503 static solver *mksolver(void)
|
Chris@10
|
504 {
|
Chris@10
|
505 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
Chris@10
|
506 S *slv = MKSOLVER(S, &sadt);
|
Chris@10
|
507 return &(slv->super);
|
Chris@10
|
508 }
|
Chris@10
|
509
|
Chris@10
|
510 void X(reodft11e_radix2_r2hc_register)(planner *p)
|
Chris@10
|
511 {
|
Chris@10
|
512 REGISTER_SOLVER(p, mksolver());
|
Chris@10
|
513 }
|