Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21
|
Chris@10
|
22 /* Do an R{E,O}DFT11 problem via an R2HC problem, with some
|
Chris@10
|
23 pre/post-processing ala FFTPACK. Use a trick from:
|
Chris@10
|
24
|
Chris@10
|
25 S. C. Chan and K. L. Ho, "Direct methods for computing discrete
|
Chris@10
|
26 sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990).
|
Chris@10
|
27
|
Chris@10
|
28 to re-express as an REDFT01 (DCT-III) problem.
|
Chris@10
|
29
|
Chris@10
|
30 NOTE: We no longer use this algorithm, because it turns out to suffer
|
Chris@10
|
31 a catastrophic loss of accuracy for certain inputs, apparently because
|
Chris@10
|
32 its post-processing multiplies the output by a cosine. Near the zero
|
Chris@10
|
33 of the cosine, the REDFT01 must produce a near-singular output.
|
Chris@10
|
34 */
|
Chris@10
|
35
|
Chris@10
|
36 #include "reodft.h"
|
Chris@10
|
37
|
Chris@10
|
38 typedef struct {
|
Chris@10
|
39 solver super;
|
Chris@10
|
40 } S;
|
Chris@10
|
41
|
Chris@10
|
42 typedef struct {
|
Chris@10
|
43 plan_rdft super;
|
Chris@10
|
44 plan *cld;
|
Chris@10
|
45 twid *td, *td2;
|
Chris@10
|
46 INT is, os;
|
Chris@10
|
47 INT n;
|
Chris@10
|
48 INT vl;
|
Chris@10
|
49 INT ivs, ovs;
|
Chris@10
|
50 rdft_kind kind;
|
Chris@10
|
51 } P;
|
Chris@10
|
52
|
Chris@10
|
53 static void apply_re11(const plan *ego_, R *I, R *O)
|
Chris@10
|
54 {
|
Chris@10
|
55 const P *ego = (const P *) ego_;
|
Chris@10
|
56 INT is = ego->is, os = ego->os;
|
Chris@10
|
57 INT i, n = ego->n;
|
Chris@10
|
58 INT iv, vl = ego->vl;
|
Chris@10
|
59 INT ivs = ego->ivs, ovs = ego->ovs;
|
Chris@10
|
60 R *W;
|
Chris@10
|
61 R *buf;
|
Chris@10
|
62 E cur;
|
Chris@10
|
63
|
Chris@10
|
64 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
Chris@10
|
65
|
Chris@10
|
66 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
Chris@10
|
67 /* I wish that this didn't require an extra pass. */
|
Chris@10
|
68 /* FIXME: use recursive/cascade summation for better stability? */
|
Chris@10
|
69 buf[n - 1] = cur = K(2.0) * I[is * (n - 1)];
|
Chris@10
|
70 for (i = n - 1; i > 0; --i) {
|
Chris@10
|
71 E curnew;
|
Chris@10
|
72 buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur;
|
Chris@10
|
73 cur = curnew;
|
Chris@10
|
74 }
|
Chris@10
|
75
|
Chris@10
|
76 W = ego->td->W;
|
Chris@10
|
77 for (i = 1; i < n - i; ++i) {
|
Chris@10
|
78 E a, b, apb, amb, wa, wb;
|
Chris@10
|
79 a = buf[i];
|
Chris@10
|
80 b = buf[n - i];
|
Chris@10
|
81 apb = a + b;
|
Chris@10
|
82 amb = a - b;
|
Chris@10
|
83 wa = W[2*i];
|
Chris@10
|
84 wb = W[2*i + 1];
|
Chris@10
|
85 buf[i] = wa * amb + wb * apb;
|
Chris@10
|
86 buf[n - i] = wa * apb - wb * amb;
|
Chris@10
|
87 }
|
Chris@10
|
88 if (i == n - i) {
|
Chris@10
|
89 buf[i] = K(2.0) * buf[i] * W[2*i];
|
Chris@10
|
90 }
|
Chris@10
|
91
|
Chris@10
|
92 {
|
Chris@10
|
93 plan_rdft *cld = (plan_rdft *) ego->cld;
|
Chris@10
|
94 cld->apply((plan *) cld, buf, buf);
|
Chris@10
|
95 }
|
Chris@10
|
96
|
Chris@10
|
97 W = ego->td2->W;
|
Chris@10
|
98 O[0] = W[0] * buf[0];
|
Chris@10
|
99 for (i = 1; i < n - i; ++i) {
|
Chris@10
|
100 E a, b;
|
Chris@10
|
101 INT k;
|
Chris@10
|
102 a = buf[i];
|
Chris@10
|
103 b = buf[n - i];
|
Chris@10
|
104 k = i + i;
|
Chris@10
|
105 O[os * (k - 1)] = W[k - 1] * (a - b);
|
Chris@10
|
106 O[os * k] = W[k] * (a + b);
|
Chris@10
|
107 }
|
Chris@10
|
108 if (i == n - i) {
|
Chris@10
|
109 O[os * (n - 1)] = W[n - 1] * buf[i];
|
Chris@10
|
110 }
|
Chris@10
|
111 }
|
Chris@10
|
112
|
Chris@10
|
113 X(ifree)(buf);
|
Chris@10
|
114 }
|
Chris@10
|
115
|
Chris@10
|
116 /* like for rodft01, rodft11 is obtained from redft11 by
|
Chris@10
|
117 reversing the input and flipping the sign of every other output. */
|
Chris@10
|
118 static void apply_ro11(const plan *ego_, R *I, R *O)
|
Chris@10
|
119 {
|
Chris@10
|
120 const P *ego = (const P *) ego_;
|
Chris@10
|
121 INT is = ego->is, os = ego->os;
|
Chris@10
|
122 INT i, n = ego->n;
|
Chris@10
|
123 INT iv, vl = ego->vl;
|
Chris@10
|
124 INT ivs = ego->ivs, ovs = ego->ovs;
|
Chris@10
|
125 R *W;
|
Chris@10
|
126 R *buf;
|
Chris@10
|
127 E cur;
|
Chris@10
|
128
|
Chris@10
|
129 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
Chris@10
|
130
|
Chris@10
|
131 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
Chris@10
|
132 /* I wish that this didn't require an extra pass. */
|
Chris@10
|
133 /* FIXME: use recursive/cascade summation for better stability? */
|
Chris@10
|
134 buf[n - 1] = cur = K(2.0) * I[0];
|
Chris@10
|
135 for (i = n - 1; i > 0; --i) {
|
Chris@10
|
136 E curnew;
|
Chris@10
|
137 buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur;
|
Chris@10
|
138 cur = curnew;
|
Chris@10
|
139 }
|
Chris@10
|
140
|
Chris@10
|
141 W = ego->td->W;
|
Chris@10
|
142 for (i = 1; i < n - i; ++i) {
|
Chris@10
|
143 E a, b, apb, amb, wa, wb;
|
Chris@10
|
144 a = buf[i];
|
Chris@10
|
145 b = buf[n - i];
|
Chris@10
|
146 apb = a + b;
|
Chris@10
|
147 amb = a - b;
|
Chris@10
|
148 wa = W[2*i];
|
Chris@10
|
149 wb = W[2*i + 1];
|
Chris@10
|
150 buf[i] = wa * amb + wb * apb;
|
Chris@10
|
151 buf[n - i] = wa * apb - wb * amb;
|
Chris@10
|
152 }
|
Chris@10
|
153 if (i == n - i) {
|
Chris@10
|
154 buf[i] = K(2.0) * buf[i] * W[2*i];
|
Chris@10
|
155 }
|
Chris@10
|
156
|
Chris@10
|
157 {
|
Chris@10
|
158 plan_rdft *cld = (plan_rdft *) ego->cld;
|
Chris@10
|
159 cld->apply((plan *) cld, buf, buf);
|
Chris@10
|
160 }
|
Chris@10
|
161
|
Chris@10
|
162 W = ego->td2->W;
|
Chris@10
|
163 O[0] = W[0] * buf[0];
|
Chris@10
|
164 for (i = 1; i < n - i; ++i) {
|
Chris@10
|
165 E a, b;
|
Chris@10
|
166 INT k;
|
Chris@10
|
167 a = buf[i];
|
Chris@10
|
168 b = buf[n - i];
|
Chris@10
|
169 k = i + i;
|
Chris@10
|
170 O[os * (k - 1)] = W[k - 1] * (b - a);
|
Chris@10
|
171 O[os * k] = W[k] * (a + b);
|
Chris@10
|
172 }
|
Chris@10
|
173 if (i == n - i) {
|
Chris@10
|
174 O[os * (n - 1)] = -W[n - 1] * buf[i];
|
Chris@10
|
175 }
|
Chris@10
|
176 }
|
Chris@10
|
177
|
Chris@10
|
178 X(ifree)(buf);
|
Chris@10
|
179 }
|
Chris@10
|
180
|
Chris@10
|
181 static void awake(plan *ego_, enum wakefulness wakefulness)
|
Chris@10
|
182 {
|
Chris@10
|
183 P *ego = (P *) ego_;
|
Chris@10
|
184 static const tw_instr reodft010e_tw[] = {
|
Chris@10
|
185 { TW_COS, 0, 1 },
|
Chris@10
|
186 { TW_SIN, 0, 1 },
|
Chris@10
|
187 { TW_NEXT, 1, 0 }
|
Chris@10
|
188 };
|
Chris@10
|
189 static const tw_instr reodft11e_tw[] = {
|
Chris@10
|
190 { TW_COS, 1, 1 },
|
Chris@10
|
191 { TW_NEXT, 2, 0 }
|
Chris@10
|
192 };
|
Chris@10
|
193
|
Chris@10
|
194 X(plan_awake)(ego->cld, wakefulness);
|
Chris@10
|
195
|
Chris@10
|
196 X(twiddle_awake)(wakefulness,
|
Chris@10
|
197 &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1);
|
Chris@10
|
198 X(twiddle_awake)(wakefulness,
|
Chris@10
|
199 &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2);
|
Chris@10
|
200 }
|
Chris@10
|
201
|
Chris@10
|
202 static void destroy(plan *ego_)
|
Chris@10
|
203 {
|
Chris@10
|
204 P *ego = (P *) ego_;
|
Chris@10
|
205 X(plan_destroy_internal)(ego->cld);
|
Chris@10
|
206 }
|
Chris@10
|
207
|
Chris@10
|
208 static void print(const plan *ego_, printer *p)
|
Chris@10
|
209 {
|
Chris@10
|
210 const P *ego = (const P *) ego_;
|
Chris@10
|
211 p->print(p, "(%se-r2hc-%D%v%(%p%))",
|
Chris@10
|
212 X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
|
Chris@10
|
213 }
|
Chris@10
|
214
|
Chris@10
|
215 static int applicable0(const solver *ego_, const problem *p_)
|
Chris@10
|
216 {
|
Chris@10
|
217 const problem_rdft *p = (const problem_rdft *) p_;
|
Chris@10
|
218
|
Chris@10
|
219 UNUSED(ego_);
|
Chris@10
|
220
|
Chris@10
|
221 return (1
|
Chris@10
|
222 && p->sz->rnk == 1
|
Chris@10
|
223 && p->vecsz->rnk <= 1
|
Chris@10
|
224 && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
|
Chris@10
|
225 );
|
Chris@10
|
226 }
|
Chris@10
|
227
|
Chris@10
|
228 static int applicable(const solver *ego, const problem *p, const planner *plnr)
|
Chris@10
|
229 {
|
Chris@10
|
230 return (!NO_SLOWP(plnr) && applicable0(ego, p));
|
Chris@10
|
231 }
|
Chris@10
|
232
|
Chris@10
|
233 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
Chris@10
|
234 {
|
Chris@10
|
235 P *pln;
|
Chris@10
|
236 const problem_rdft *p;
|
Chris@10
|
237 plan *cld;
|
Chris@10
|
238 R *buf;
|
Chris@10
|
239 INT n;
|
Chris@10
|
240 opcnt ops;
|
Chris@10
|
241
|
Chris@10
|
242 static const plan_adt padt = {
|
Chris@10
|
243 X(rdft_solve), awake, print, destroy
|
Chris@10
|
244 };
|
Chris@10
|
245
|
Chris@10
|
246 if (!applicable(ego_, p_, plnr))
|
Chris@10
|
247 return (plan *)0;
|
Chris@10
|
248
|
Chris@10
|
249 p = (const problem_rdft *) p_;
|
Chris@10
|
250
|
Chris@10
|
251 n = p->sz->dims[0].n;
|
Chris@10
|
252 buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
Chris@10
|
253
|
Chris@10
|
254 cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
|
Chris@10
|
255 X(mktensor_0d)(),
|
Chris@10
|
256 buf, buf, R2HC));
|
Chris@10
|
257 X(ifree)(buf);
|
Chris@10
|
258 if (!cld)
|
Chris@10
|
259 return (plan *)0;
|
Chris@10
|
260
|
Chris@10
|
261 pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
|
Chris@10
|
262 pln->n = n;
|
Chris@10
|
263 pln->is = p->sz->dims[0].is;
|
Chris@10
|
264 pln->os = p->sz->dims[0].os;
|
Chris@10
|
265 pln->cld = cld;
|
Chris@10
|
266 pln->td = pln->td2 = 0;
|
Chris@10
|
267 pln->kind = p->kind[0];
|
Chris@10
|
268
|
Chris@10
|
269 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
|
Chris@10
|
270
|
Chris@10
|
271 X(ops_zero)(&ops);
|
Chris@10
|
272 ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6;
|
Chris@10
|
273 ops.add = (n - 1) * 1 + (n-1)/2 * 6;
|
Chris@10
|
274 ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3;
|
Chris@10
|
275
|
Chris@10
|
276 X(ops_zero)(&pln->super.super.ops);
|
Chris@10
|
277 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
|
Chris@10
|
278 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
|
Chris@10
|
279
|
Chris@10
|
280 return &(pln->super.super);
|
Chris@10
|
281 }
|
Chris@10
|
282
|
Chris@10
|
283 /* constructor */
|
Chris@10
|
284 static solver *mksolver(void)
|
Chris@10
|
285 {
|
Chris@10
|
286 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
Chris@10
|
287 S *slv = MKSOLVER(S, &sadt);
|
Chris@10
|
288 return &(slv->super);
|
Chris@10
|
289 }
|
Chris@10
|
290
|
Chris@10
|
291 void X(reodft11e_r2hc_register)(planner *p)
|
Chris@10
|
292 {
|
Chris@10
|
293 REGISTER_SOLVER(p, mksolver());
|
Chris@10
|
294 }
|