Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21
|
Chris@10
|
22 /* Do a REDFT00 problem via an R2HC problem, padded symmetrically to
|
Chris@10
|
23 twice the size. This is asymptotically a factor of ~2 worse than
|
Chris@10
|
24 redft00e-r2hc.c (the algorithm used in e.g. FFTPACK and Numerical
|
Chris@10
|
25 Recipes), but we abandoned the latter after we discovered that it
|
Chris@10
|
26 has intrinsic accuracy problems. */
|
Chris@10
|
27
|
Chris@10
|
28 #include "reodft.h"
|
Chris@10
|
29
|
Chris@10
|
30 typedef struct {
|
Chris@10
|
31 solver super;
|
Chris@10
|
32 } S;
|
Chris@10
|
33
|
Chris@10
|
34 typedef struct {
|
Chris@10
|
35 plan_rdft super;
|
Chris@10
|
36 plan *cld, *cldcpy;
|
Chris@10
|
37 INT is;
|
Chris@10
|
38 INT n;
|
Chris@10
|
39 INT vl;
|
Chris@10
|
40 INT ivs, ovs;
|
Chris@10
|
41 } P;
|
Chris@10
|
42
|
Chris@10
|
43 static void apply(const plan *ego_, R *I, R *O)
|
Chris@10
|
44 {
|
Chris@10
|
45 const P *ego = (const P *) ego_;
|
Chris@10
|
46 INT is = ego->is;
|
Chris@10
|
47 INT i, n = ego->n;
|
Chris@10
|
48 INT iv, vl = ego->vl;
|
Chris@10
|
49 INT ivs = ego->ivs, ovs = ego->ovs;
|
Chris@10
|
50 R *buf;
|
Chris@10
|
51
|
Chris@10
|
52 buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS);
|
Chris@10
|
53
|
Chris@10
|
54 for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
Chris@10
|
55 buf[0] = I[0];
|
Chris@10
|
56 for (i = 1; i < n; ++i) {
|
Chris@10
|
57 R a = I[i * is];
|
Chris@10
|
58 buf[i] = a;
|
Chris@10
|
59 buf[2*n - i] = a;
|
Chris@10
|
60 }
|
Chris@10
|
61 buf[i] = I[i * is]; /* i == n, Nyquist */
|
Chris@10
|
62
|
Chris@10
|
63 /* r2hc transform of size 2*n */
|
Chris@10
|
64 {
|
Chris@10
|
65 plan_rdft *cld = (plan_rdft *) ego->cld;
|
Chris@10
|
66 cld->apply((plan *) cld, buf, buf);
|
Chris@10
|
67 }
|
Chris@10
|
68
|
Chris@10
|
69 /* copy n+1 real numbers (real parts of hc array) from buf to O */
|
Chris@10
|
70 {
|
Chris@10
|
71 plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
|
Chris@10
|
72 cldcpy->apply((plan *) cldcpy, buf, O);
|
Chris@10
|
73 }
|
Chris@10
|
74 }
|
Chris@10
|
75
|
Chris@10
|
76 X(ifree)(buf);
|
Chris@10
|
77 }
|
Chris@10
|
78
|
Chris@10
|
79 static void awake(plan *ego_, enum wakefulness wakefulness)
|
Chris@10
|
80 {
|
Chris@10
|
81 P *ego = (P *) ego_;
|
Chris@10
|
82 X(plan_awake)(ego->cld, wakefulness);
|
Chris@10
|
83 X(plan_awake)(ego->cldcpy, wakefulness);
|
Chris@10
|
84 }
|
Chris@10
|
85
|
Chris@10
|
86 static void destroy(plan *ego_)
|
Chris@10
|
87 {
|
Chris@10
|
88 P *ego = (P *) ego_;
|
Chris@10
|
89 X(plan_destroy_internal)(ego->cldcpy);
|
Chris@10
|
90 X(plan_destroy_internal)(ego->cld);
|
Chris@10
|
91 }
|
Chris@10
|
92
|
Chris@10
|
93 static void print(const plan *ego_, printer *p)
|
Chris@10
|
94 {
|
Chris@10
|
95 const P *ego = (const P *) ego_;
|
Chris@10
|
96 p->print(p, "(redft00e-r2hc-pad-%D%v%(%p%)%(%p%))",
|
Chris@10
|
97 ego->n + 1, ego->vl, ego->cld, ego->cldcpy);
|
Chris@10
|
98 }
|
Chris@10
|
99
|
Chris@10
|
100 static int applicable0(const solver *ego_, const problem *p_)
|
Chris@10
|
101 {
|
Chris@10
|
102 const problem_rdft *p = (const problem_rdft *) p_;
|
Chris@10
|
103 UNUSED(ego_);
|
Chris@10
|
104
|
Chris@10
|
105 return (1
|
Chris@10
|
106 && p->sz->rnk == 1
|
Chris@10
|
107 && p->vecsz->rnk <= 1
|
Chris@10
|
108 && p->kind[0] == REDFT00
|
Chris@10
|
109 && p->sz->dims[0].n > 1 /* n == 1 is not well-defined */
|
Chris@10
|
110 );
|
Chris@10
|
111 }
|
Chris@10
|
112
|
Chris@10
|
113 static int applicable(const solver *ego, const problem *p, const planner *plnr)
|
Chris@10
|
114 {
|
Chris@10
|
115 return (!NO_SLOWP(plnr) && applicable0(ego, p));
|
Chris@10
|
116 }
|
Chris@10
|
117
|
Chris@10
|
118 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
Chris@10
|
119 {
|
Chris@10
|
120 P *pln;
|
Chris@10
|
121 const problem_rdft *p;
|
Chris@10
|
122 plan *cld = (plan *) 0, *cldcpy;
|
Chris@10
|
123 R *buf = (R *) 0;
|
Chris@10
|
124 INT n;
|
Chris@10
|
125 INT vl, ivs, ovs;
|
Chris@10
|
126 opcnt ops;
|
Chris@10
|
127
|
Chris@10
|
128 static const plan_adt padt = {
|
Chris@10
|
129 X(rdft_solve), awake, print, destroy
|
Chris@10
|
130 };
|
Chris@10
|
131
|
Chris@10
|
132 if (!applicable(ego_, p_, plnr))
|
Chris@10
|
133 goto nada;
|
Chris@10
|
134
|
Chris@10
|
135 p = (const problem_rdft *) p_;
|
Chris@10
|
136
|
Chris@10
|
137 n = p->sz->dims[0].n - 1;
|
Chris@10
|
138 A(n > 0);
|
Chris@10
|
139 buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS);
|
Chris@10
|
140
|
Chris@10
|
141 cld = X(mkplan_d)(plnr,X(mkproblem_rdft_1_d)(X(mktensor_1d)(2*n,1,1),
|
Chris@10
|
142 X(mktensor_0d)(),
|
Chris@10
|
143 buf, buf, R2HC));
|
Chris@10
|
144 if (!cld)
|
Chris@10
|
145 goto nada;
|
Chris@10
|
146
|
Chris@10
|
147 X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
|
Chris@10
|
148 cldcpy =
|
Chris@10
|
149 X(mkplan_d)(plnr,
|
Chris@10
|
150 X(mkproblem_rdft_1_d)(X(mktensor_0d)(),
|
Chris@10
|
151 X(mktensor_1d)(n+1,1,
|
Chris@10
|
152 p->sz->dims[0].os),
|
Chris@10
|
153 buf, TAINT(p->O, ovs), R2HC));
|
Chris@10
|
154 if (!cldcpy)
|
Chris@10
|
155 goto nada;
|
Chris@10
|
156
|
Chris@10
|
157 X(ifree)(buf);
|
Chris@10
|
158
|
Chris@10
|
159 pln = MKPLAN_RDFT(P, &padt, apply);
|
Chris@10
|
160
|
Chris@10
|
161 pln->n = n;
|
Chris@10
|
162 pln->is = p->sz->dims[0].is;
|
Chris@10
|
163 pln->cld = cld;
|
Chris@10
|
164 pln->cldcpy = cldcpy;
|
Chris@10
|
165 pln->vl = vl;
|
Chris@10
|
166 pln->ivs = ivs;
|
Chris@10
|
167 pln->ovs = ovs;
|
Chris@10
|
168
|
Chris@10
|
169 X(ops_zero)(&ops);
|
Chris@10
|
170 ops.other = n + 2*n; /* loads + stores (input -> buf) */
|
Chris@10
|
171
|
Chris@10
|
172 X(ops_zero)(&pln->super.super.ops);
|
Chris@10
|
173 X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
|
Chris@10
|
174 X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
|
Chris@10
|
175 X(ops_madd2)(pln->vl, &cldcpy->ops, &pln->super.super.ops);
|
Chris@10
|
176
|
Chris@10
|
177 return &(pln->super.super);
|
Chris@10
|
178
|
Chris@10
|
179 nada:
|
Chris@10
|
180 X(ifree0)(buf);
|
Chris@10
|
181 if (cld)
|
Chris@10
|
182 X(plan_destroy_internal)(cld);
|
Chris@10
|
183 return (plan *)0;
|
Chris@10
|
184 }
|
Chris@10
|
185
|
Chris@10
|
186 /* constructor */
|
Chris@10
|
187 static solver *mksolver(void)
|
Chris@10
|
188 {
|
Chris@10
|
189 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
Chris@10
|
190 S *slv = MKSOLVER(S, &sadt);
|
Chris@10
|
191 return &(slv->super);
|
Chris@10
|
192 }
|
Chris@10
|
193
|
Chris@10
|
194 void X(redft00e_r2hc_pad_register)(planner *p)
|
Chris@10
|
195 {
|
Chris@10
|
196 REGISTER_SOLVER(p, mksolver());
|
Chris@10
|
197 }
|