Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 41 FP additions, 40 FP multiplications,
|
Chris@10
|
32 * (or, 23 additions, 22 multiplications, 18 fused multiply/add),
|
Chris@10
|
33 * 52 stack variables, 2 constants, and 16 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cfv.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
41 {
|
Chris@10
|
42 INT m;
|
Chris@10
|
43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
|
Chris@10
|
44 V T3, Tc, Tl, Ts, Tf, Tg, Te, Tp, T7, Ta, T1, T2, Tb, Tj, Tk;
|
Chris@10
|
45 V Ti, Tr, T5, T6, T4, T9, Th, Tq, TC, T8, Td, TF, Tm, TG, TD;
|
Chris@10
|
46 V Tt, Tu, Tn, TH, TL, TE, TK, Tz, Tv, Ty, To, TJ, TI, TN, TM;
|
Chris@10
|
47 V TB, TA, Tx, Tw;
|
Chris@10
|
48 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
49 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
50 Tb = LDW(&(W[0]));
|
Chris@10
|
51 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
52 Tk = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
53 Ti = LDW(&(W[TWVL * 12]));
|
Chris@10
|
54 Tr = LDW(&(W[TWVL * 10]));
|
Chris@10
|
55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
57 T3 = VFMACONJ(T2, T1);
|
Chris@10
|
58 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
|
Chris@10
|
59 T4 = LDW(&(W[TWVL * 6]));
|
Chris@10
|
60 T9 = LDW(&(W[TWVL * 8]));
|
Chris@10
|
61 Tl = VZMULIJ(Ti, VFNMSCONJ(Tk, Tj));
|
Chris@10
|
62 Ts = VZMULJ(Tr, VFMACONJ(Tk, Tj));
|
Chris@10
|
63 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
64 Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
65 Te = LDW(&(W[TWVL * 4]));
|
Chris@10
|
66 Tp = LDW(&(W[TWVL * 2]));
|
Chris@10
|
67 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
|
Chris@10
|
68 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
|
Chris@10
|
69 Th = VZMULIJ(Te, VFNMSCONJ(Tg, Tf));
|
Chris@10
|
70 Tq = VZMULJ(Tp, VFMACONJ(Tg, Tf));
|
Chris@10
|
71 TC = VADD(T3, T7);
|
Chris@10
|
72 T8 = VSUB(T3, T7);
|
Chris@10
|
73 Td = VSUB(Ta, Tc);
|
Chris@10
|
74 TF = VADD(Tc, Ta);
|
Chris@10
|
75 Tm = VSUB(Th, Tl);
|
Chris@10
|
76 TG = VADD(Th, Tl);
|
Chris@10
|
77 TD = VADD(Tq, Ts);
|
Chris@10
|
78 Tt = VSUB(Tq, Ts);
|
Chris@10
|
79 Tu = VSUB(Tm, Td);
|
Chris@10
|
80 Tn = VADD(Td, Tm);
|
Chris@10
|
81 TH = VSUB(TF, TG);
|
Chris@10
|
82 TL = VADD(TF, TG);
|
Chris@10
|
83 TE = VSUB(TC, TD);
|
Chris@10
|
84 TK = VADD(TC, TD);
|
Chris@10
|
85 Tz = VFMA(LDK(KP707106781), Tu, Tt);
|
Chris@10
|
86 Tv = VFNMS(LDK(KP707106781), Tu, Tt);
|
Chris@10
|
87 Ty = VFNMS(LDK(KP707106781), Tn, T8);
|
Chris@10
|
88 To = VFMA(LDK(KP707106781), Tn, T8);
|
Chris@10
|
89 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TH, TE)));
|
Chris@10
|
90 TI = VMUL(LDK(KP500000000), VFMAI(TH, TE));
|
Chris@10
|
91 TN = VCONJ(VMUL(LDK(KP500000000), VADD(TL, TK)));
|
Chris@10
|
92 TM = VMUL(LDK(KP500000000), VSUB(TK, TL));
|
Chris@10
|
93 TB = VMUL(LDK(KP500000000), VFMAI(Tz, Ty));
|
Chris@10
|
94 TA = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tz, Ty)));
|
Chris@10
|
95 Tx = VCONJ(VMUL(LDK(KP500000000), VFMAI(Tv, To)));
|
Chris@10
|
96 Tw = VMUL(LDK(KP500000000), VFNMSI(Tv, To));
|
Chris@10
|
97 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
98 ST(&(Rp[WS(rs, 2)]), TI, ms, &(Rp[0]));
|
Chris@10
|
99 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
100 ST(&(Rp[0]), TM, ms, &(Rp[0]));
|
Chris@10
|
101 ST(&(Rp[WS(rs, 3)]), TB, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
102 ST(&(Rm[WS(rs, 2)]), TA, -ms, &(Rm[0]));
|
Chris@10
|
103 ST(&(Rm[0]), Tx, -ms, &(Rm[0]));
|
Chris@10
|
104 ST(&(Rp[WS(rs, 1)]), Tw, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
105 }
|
Chris@10
|
106 }
|
Chris@10
|
107 VLEAVE();
|
Chris@10
|
108 }
|
Chris@10
|
109
|
Chris@10
|
110 static const tw_instr twinstr[] = {
|
Chris@10
|
111 VTW(1, 1),
|
Chris@10
|
112 VTW(1, 2),
|
Chris@10
|
113 VTW(1, 3),
|
Chris@10
|
114 VTW(1, 4),
|
Chris@10
|
115 VTW(1, 5),
|
Chris@10
|
116 VTW(1, 6),
|
Chris@10
|
117 VTW(1, 7),
|
Chris@10
|
118 {TW_NEXT, VL, 0}
|
Chris@10
|
119 };
|
Chris@10
|
120
|
Chris@10
|
121 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {23, 22, 18, 0} };
|
Chris@10
|
122
|
Chris@10
|
123 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
|
Chris@10
|
124 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
|
Chris@10
|
125 }
|
Chris@10
|
126 #else /* HAVE_FMA */
|
Chris@10
|
127
|
Chris@10
|
128 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
|
Chris@10
|
129
|
Chris@10
|
130 /*
|
Chris@10
|
131 * This function contains 41 FP additions, 23 FP multiplications,
|
Chris@10
|
132 * (or, 41 additions, 23 multiplications, 0 fused multiply/add),
|
Chris@10
|
133 * 57 stack variables, 3 constants, and 16 memory accesses
|
Chris@10
|
134 */
|
Chris@10
|
135 #include "hc2cfv.h"
|
Chris@10
|
136
|
Chris@10
|
137 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
138 {
|
Chris@10
|
139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
Chris@10
|
140 DVK(KP353553390, +0.353553390593273762200422181052424519642417969);
|
Chris@10
|
141 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
142 {
|
Chris@10
|
143 INT m;
|
Chris@10
|
144 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
|
Chris@10
|
145 V Ta, TE, Tr, TF, Tl, TK, Tw, TG, T1, T6, T3, T8, T2, T7, T4;
|
Chris@10
|
146 V T9, T5, To, Tq, Tn, Tp, Tc, Th, Te, Tj, Td, Ti, Tf, Tk, Tb;
|
Chris@10
|
147 V Tg, Tt, Tv, Ts, Tu, Ty, Tz, Tm, Tx, TC, TD, TA, TB, TI, TO;
|
Chris@10
|
148 V TL, TP, TH, TJ, TM, TR, TN, TQ;
|
Chris@10
|
149 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
150 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
151 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
152 T3 = VCONJ(T2);
|
Chris@10
|
153 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
154 T8 = VCONJ(T7);
|
Chris@10
|
155 T4 = VADD(T1, T3);
|
Chris@10
|
156 T5 = LDW(&(W[TWVL * 6]));
|
Chris@10
|
157 T9 = VZMULJ(T5, VADD(T6, T8));
|
Chris@10
|
158 Ta = VADD(T4, T9);
|
Chris@10
|
159 TE = VMUL(LDK(KP500000000), VSUB(T4, T9));
|
Chris@10
|
160 Tn = LDW(&(W[0]));
|
Chris@10
|
161 To = VZMULIJ(Tn, VSUB(T3, T1));
|
Chris@10
|
162 Tp = LDW(&(W[TWVL * 8]));
|
Chris@10
|
163 Tq = VZMULIJ(Tp, VSUB(T8, T6));
|
Chris@10
|
164 Tr = VADD(To, Tq);
|
Chris@10
|
165 TF = VSUB(To, Tq);
|
Chris@10
|
166 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
167 Th = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
168 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
169 Te = VCONJ(Td);
|
Chris@10
|
170 Ti = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
171 Tj = VCONJ(Ti);
|
Chris@10
|
172 Tb = LDW(&(W[TWVL * 2]));
|
Chris@10
|
173 Tf = VZMULJ(Tb, VADD(Tc, Te));
|
Chris@10
|
174 Tg = LDW(&(W[TWVL * 10]));
|
Chris@10
|
175 Tk = VZMULJ(Tg, VADD(Th, Tj));
|
Chris@10
|
176 Tl = VADD(Tf, Tk);
|
Chris@10
|
177 TK = VSUB(Tf, Tk);
|
Chris@10
|
178 Ts = LDW(&(W[TWVL * 4]));
|
Chris@10
|
179 Tt = VZMULIJ(Ts, VSUB(Te, Tc));
|
Chris@10
|
180 Tu = LDW(&(W[TWVL * 12]));
|
Chris@10
|
181 Tv = VZMULIJ(Tu, VSUB(Tj, Th));
|
Chris@10
|
182 Tw = VADD(Tt, Tv);
|
Chris@10
|
183 TG = VSUB(Tv, Tt);
|
Chris@10
|
184 Tm = VADD(Ta, Tl);
|
Chris@10
|
185 Tx = VADD(Tr, Tw);
|
Chris@10
|
186 Ty = VCONJ(VMUL(LDK(KP500000000), VSUB(Tm, Tx)));
|
Chris@10
|
187 Tz = VMUL(LDK(KP500000000), VADD(Tm, Tx));
|
Chris@10
|
188 ST(&(Rm[WS(rs, 3)]), Ty, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
189 ST(&(Rp[0]), Tz, ms, &(Rp[0]));
|
Chris@10
|
190 TA = VSUB(Ta, Tl);
|
Chris@10
|
191 TB = VBYI(VSUB(Tw, Tr));
|
Chris@10
|
192 TC = VCONJ(VMUL(LDK(KP500000000), VSUB(TA, TB)));
|
Chris@10
|
193 TD = VMUL(LDK(KP500000000), VADD(TA, TB));
|
Chris@10
|
194 ST(&(Rm[WS(rs, 1)]), TC, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
195 ST(&(Rp[WS(rs, 2)]), TD, ms, &(Rp[0]));
|
Chris@10
|
196 TH = VMUL(LDK(KP353553390), VADD(TF, TG));
|
Chris@10
|
197 TI = VADD(TE, TH);
|
Chris@10
|
198 TO = VSUB(TE, TH);
|
Chris@10
|
199 TJ = VMUL(LDK(KP707106781), VSUB(TG, TF));
|
Chris@10
|
200 TL = VMUL(LDK(KP500000000), VBYI(VSUB(TJ, TK)));
|
Chris@10
|
201 TP = VMUL(LDK(KP500000000), VBYI(VADD(TK, TJ)));
|
Chris@10
|
202 TM = VCONJ(VSUB(TI, TL));
|
Chris@10
|
203 ST(&(Rm[0]), TM, -ms, &(Rm[0]));
|
Chris@10
|
204 TR = VADD(TO, TP);
|
Chris@10
|
205 ST(&(Rp[WS(rs, 3)]), TR, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
206 TN = VADD(TI, TL);
|
Chris@10
|
207 ST(&(Rp[WS(rs, 1)]), TN, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
208 TQ = VCONJ(VSUB(TO, TP));
|
Chris@10
|
209 ST(&(Rm[WS(rs, 2)]), TQ, -ms, &(Rm[0]));
|
Chris@10
|
210 }
|
Chris@10
|
211 }
|
Chris@10
|
212 VLEAVE();
|
Chris@10
|
213 }
|
Chris@10
|
214
|
Chris@10
|
215 static const tw_instr twinstr[] = {
|
Chris@10
|
216 VTW(1, 1),
|
Chris@10
|
217 VTW(1, 2),
|
Chris@10
|
218 VTW(1, 3),
|
Chris@10
|
219 VTW(1, 4),
|
Chris@10
|
220 VTW(1, 5),
|
Chris@10
|
221 VTW(1, 6),
|
Chris@10
|
222 VTW(1, 7),
|
Chris@10
|
223 {TW_NEXT, VL, 0}
|
Chris@10
|
224 };
|
Chris@10
|
225
|
Chris@10
|
226 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {41, 23, 0, 0} };
|
Chris@10
|
227
|
Chris@10
|
228 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
|
Chris@10
|
229 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
|
Chris@10
|
230 }
|
Chris@10
|
231 #endif /* HAVE_FMA */
|