annotate src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_8.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 41 FP additions, 40 FP multiplications,
Chris@10 32 * (or, 23 additions, 22 multiplications, 18 fused multiply/add),
Chris@10 33 * 52 stack variables, 2 constants, and 16 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cfv.h"
Chris@10 36
Chris@10 37 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 40 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 41 {
Chris@10 42 INT m;
Chris@10 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 44 V T3, Tc, Tl, Ts, Tf, Tg, Te, Tp, T7, Ta, T1, T2, Tb, Tj, Tk;
Chris@10 45 V Ti, Tr, T5, T6, T4, T9, Th, Tq, TC, T8, Td, TF, Tm, TG, TD;
Chris@10 46 V Tt, Tu, Tn, TH, TL, TE, TK, Tz, Tv, Ty, To, TJ, TI, TN, TM;
Chris@10 47 V TB, TA, Tx, Tw;
Chris@10 48 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 49 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 50 Tb = LDW(&(W[0]));
Chris@10 51 Tj = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 52 Tk = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 53 Ti = LDW(&(W[TWVL * 12]));
Chris@10 54 Tr = LDW(&(W[TWVL * 10]));
Chris@10 55 T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 56 T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 57 T3 = VFMACONJ(T2, T1);
Chris@10 58 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
Chris@10 59 T4 = LDW(&(W[TWVL * 6]));
Chris@10 60 T9 = LDW(&(W[TWVL * 8]));
Chris@10 61 Tl = VZMULIJ(Ti, VFNMSCONJ(Tk, Tj));
Chris@10 62 Ts = VZMULJ(Tr, VFMACONJ(Tk, Tj));
Chris@10 63 Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 64 Tg = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 65 Te = LDW(&(W[TWVL * 4]));
Chris@10 66 Tp = LDW(&(W[TWVL * 2]));
Chris@10 67 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
Chris@10 68 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
Chris@10 69 Th = VZMULIJ(Te, VFNMSCONJ(Tg, Tf));
Chris@10 70 Tq = VZMULJ(Tp, VFMACONJ(Tg, Tf));
Chris@10 71 TC = VADD(T3, T7);
Chris@10 72 T8 = VSUB(T3, T7);
Chris@10 73 Td = VSUB(Ta, Tc);
Chris@10 74 TF = VADD(Tc, Ta);
Chris@10 75 Tm = VSUB(Th, Tl);
Chris@10 76 TG = VADD(Th, Tl);
Chris@10 77 TD = VADD(Tq, Ts);
Chris@10 78 Tt = VSUB(Tq, Ts);
Chris@10 79 Tu = VSUB(Tm, Td);
Chris@10 80 Tn = VADD(Td, Tm);
Chris@10 81 TH = VSUB(TF, TG);
Chris@10 82 TL = VADD(TF, TG);
Chris@10 83 TE = VSUB(TC, TD);
Chris@10 84 TK = VADD(TC, TD);
Chris@10 85 Tz = VFMA(LDK(KP707106781), Tu, Tt);
Chris@10 86 Tv = VFNMS(LDK(KP707106781), Tu, Tt);
Chris@10 87 Ty = VFNMS(LDK(KP707106781), Tn, T8);
Chris@10 88 To = VFMA(LDK(KP707106781), Tn, T8);
Chris@10 89 TJ = VCONJ(VMUL(LDK(KP500000000), VFNMSI(TH, TE)));
Chris@10 90 TI = VMUL(LDK(KP500000000), VFMAI(TH, TE));
Chris@10 91 TN = VCONJ(VMUL(LDK(KP500000000), VADD(TL, TK)));
Chris@10 92 TM = VMUL(LDK(KP500000000), VSUB(TK, TL));
Chris@10 93 TB = VMUL(LDK(KP500000000), VFMAI(Tz, Ty));
Chris@10 94 TA = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tz, Ty)));
Chris@10 95 Tx = VCONJ(VMUL(LDK(KP500000000), VFMAI(Tv, To)));
Chris@10 96 Tw = VMUL(LDK(KP500000000), VFNMSI(Tv, To));
Chris@10 97 ST(&(Rm[WS(rs, 1)]), TJ, -ms, &(Rm[WS(rs, 1)]));
Chris@10 98 ST(&(Rp[WS(rs, 2)]), TI, ms, &(Rp[0]));
Chris@10 99 ST(&(Rm[WS(rs, 3)]), TN, -ms, &(Rm[WS(rs, 1)]));
Chris@10 100 ST(&(Rp[0]), TM, ms, &(Rp[0]));
Chris@10 101 ST(&(Rp[WS(rs, 3)]), TB, ms, &(Rp[WS(rs, 1)]));
Chris@10 102 ST(&(Rm[WS(rs, 2)]), TA, -ms, &(Rm[0]));
Chris@10 103 ST(&(Rm[0]), Tx, -ms, &(Rm[0]));
Chris@10 104 ST(&(Rp[WS(rs, 1)]), Tw, ms, &(Rp[WS(rs, 1)]));
Chris@10 105 }
Chris@10 106 }
Chris@10 107 VLEAVE();
Chris@10 108 }
Chris@10 109
Chris@10 110 static const tw_instr twinstr[] = {
Chris@10 111 VTW(1, 1),
Chris@10 112 VTW(1, 2),
Chris@10 113 VTW(1, 3),
Chris@10 114 VTW(1, 4),
Chris@10 115 VTW(1, 5),
Chris@10 116 VTW(1, 6),
Chris@10 117 VTW(1, 7),
Chris@10 118 {TW_NEXT, VL, 0}
Chris@10 119 };
Chris@10 120
Chris@10 121 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {23, 22, 18, 0} };
Chris@10 122
Chris@10 123 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
Chris@10 124 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
Chris@10 125 }
Chris@10 126 #else /* HAVE_FMA */
Chris@10 127
Chris@10 128 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dit -name hc2cfdftv_8 -include hc2cfv.h */
Chris@10 129
Chris@10 130 /*
Chris@10 131 * This function contains 41 FP additions, 23 FP multiplications,
Chris@10 132 * (or, 41 additions, 23 multiplications, 0 fused multiply/add),
Chris@10 133 * 57 stack variables, 3 constants, and 16 memory accesses
Chris@10 134 */
Chris@10 135 #include "hc2cfv.h"
Chris@10 136
Chris@10 137 static void hc2cfdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 138 {
Chris@10 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@10 140 DVK(KP353553390, +0.353553390593273762200422181052424519642417969);
Chris@10 141 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 142 {
Chris@10 143 INT m;
Chris@10 144 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
Chris@10 145 V Ta, TE, Tr, TF, Tl, TK, Tw, TG, T1, T6, T3, T8, T2, T7, T4;
Chris@10 146 V T9, T5, To, Tq, Tn, Tp, Tc, Th, Te, Tj, Td, Ti, Tf, Tk, Tb;
Chris@10 147 V Tg, Tt, Tv, Ts, Tu, Ty, Tz, Tm, Tx, TC, TD, TA, TB, TI, TO;
Chris@10 148 V TL, TP, TH, TJ, TM, TR, TN, TQ;
Chris@10 149 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 150 T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 151 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 152 T3 = VCONJ(T2);
Chris@10 153 T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 154 T8 = VCONJ(T7);
Chris@10 155 T4 = VADD(T1, T3);
Chris@10 156 T5 = LDW(&(W[TWVL * 6]));
Chris@10 157 T9 = VZMULJ(T5, VADD(T6, T8));
Chris@10 158 Ta = VADD(T4, T9);
Chris@10 159 TE = VMUL(LDK(KP500000000), VSUB(T4, T9));
Chris@10 160 Tn = LDW(&(W[0]));
Chris@10 161 To = VZMULIJ(Tn, VSUB(T3, T1));
Chris@10 162 Tp = LDW(&(W[TWVL * 8]));
Chris@10 163 Tq = VZMULIJ(Tp, VSUB(T8, T6));
Chris@10 164 Tr = VADD(To, Tq);
Chris@10 165 TF = VSUB(To, Tq);
Chris@10 166 Tc = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 167 Th = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 168 Td = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 169 Te = VCONJ(Td);
Chris@10 170 Ti = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 171 Tj = VCONJ(Ti);
Chris@10 172 Tb = LDW(&(W[TWVL * 2]));
Chris@10 173 Tf = VZMULJ(Tb, VADD(Tc, Te));
Chris@10 174 Tg = LDW(&(W[TWVL * 10]));
Chris@10 175 Tk = VZMULJ(Tg, VADD(Th, Tj));
Chris@10 176 Tl = VADD(Tf, Tk);
Chris@10 177 TK = VSUB(Tf, Tk);
Chris@10 178 Ts = LDW(&(W[TWVL * 4]));
Chris@10 179 Tt = VZMULIJ(Ts, VSUB(Te, Tc));
Chris@10 180 Tu = LDW(&(W[TWVL * 12]));
Chris@10 181 Tv = VZMULIJ(Tu, VSUB(Tj, Th));
Chris@10 182 Tw = VADD(Tt, Tv);
Chris@10 183 TG = VSUB(Tv, Tt);
Chris@10 184 Tm = VADD(Ta, Tl);
Chris@10 185 Tx = VADD(Tr, Tw);
Chris@10 186 Ty = VCONJ(VMUL(LDK(KP500000000), VSUB(Tm, Tx)));
Chris@10 187 Tz = VMUL(LDK(KP500000000), VADD(Tm, Tx));
Chris@10 188 ST(&(Rm[WS(rs, 3)]), Ty, -ms, &(Rm[WS(rs, 1)]));
Chris@10 189 ST(&(Rp[0]), Tz, ms, &(Rp[0]));
Chris@10 190 TA = VSUB(Ta, Tl);
Chris@10 191 TB = VBYI(VSUB(Tw, Tr));
Chris@10 192 TC = VCONJ(VMUL(LDK(KP500000000), VSUB(TA, TB)));
Chris@10 193 TD = VMUL(LDK(KP500000000), VADD(TA, TB));
Chris@10 194 ST(&(Rm[WS(rs, 1)]), TC, -ms, &(Rm[WS(rs, 1)]));
Chris@10 195 ST(&(Rp[WS(rs, 2)]), TD, ms, &(Rp[0]));
Chris@10 196 TH = VMUL(LDK(KP353553390), VADD(TF, TG));
Chris@10 197 TI = VADD(TE, TH);
Chris@10 198 TO = VSUB(TE, TH);
Chris@10 199 TJ = VMUL(LDK(KP707106781), VSUB(TG, TF));
Chris@10 200 TL = VMUL(LDK(KP500000000), VBYI(VSUB(TJ, TK)));
Chris@10 201 TP = VMUL(LDK(KP500000000), VBYI(VADD(TK, TJ)));
Chris@10 202 TM = VCONJ(VSUB(TI, TL));
Chris@10 203 ST(&(Rm[0]), TM, -ms, &(Rm[0]));
Chris@10 204 TR = VADD(TO, TP);
Chris@10 205 ST(&(Rp[WS(rs, 3)]), TR, ms, &(Rp[WS(rs, 1)]));
Chris@10 206 TN = VADD(TI, TL);
Chris@10 207 ST(&(Rp[WS(rs, 1)]), TN, ms, &(Rp[WS(rs, 1)]));
Chris@10 208 TQ = VCONJ(VSUB(TO, TP));
Chris@10 209 ST(&(Rm[WS(rs, 2)]), TQ, -ms, &(Rm[0]));
Chris@10 210 }
Chris@10 211 }
Chris@10 212 VLEAVE();
Chris@10 213 }
Chris@10 214
Chris@10 215 static const tw_instr twinstr[] = {
Chris@10 216 VTW(1, 1),
Chris@10 217 VTW(1, 2),
Chris@10 218 VTW(1, 3),
Chris@10 219 VTW(1, 4),
Chris@10 220 VTW(1, 5),
Chris@10 221 VTW(1, 6),
Chris@10 222 VTW(1, 7),
Chris@10 223 {TW_NEXT, VL, 0}
Chris@10 224 };
Chris@10 225
Chris@10 226 static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cfdftv_8"), twinstr, &GENUS, {41, 23, 0, 0} };
Chris@10 227
Chris@10 228 void XSIMD(codelet_hc2cfdftv_8) (planner *p) {
Chris@10 229 X(khc2c_register) (p, hc2cfdftv_8, &desc, HC2C_VIA_DFT);
Chris@10 230 }
Chris@10 231 #endif /* HAVE_FMA */