annotate src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_6.c @ 23:619f715526df sv_v2.1

Update Vamp plugin SDK to 2.5
author Chris Cannam
date Thu, 09 May 2013 10:52:46 +0100
parents 37bf6b4a2645
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@10 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
Chris@10 23
Chris@10 24 #include "codelet-rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_FMA
Chris@10 27
Chris@10 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
Chris@10 29
Chris@10 30 /*
Chris@10 31 * This function contains 29 FP additions, 30 FP multiplications,
Chris@10 32 * (or, 17 additions, 18 multiplications, 12 fused multiply/add),
Chris@10 33 * 38 stack variables, 2 constants, and 12 memory accesses
Chris@10 34 */
Chris@10 35 #include "hc2cfv.h"
Chris@10 36
Chris@10 37 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 38 {
Chris@10 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 41 {
Chris@10 42 INT m;
Chris@10 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@10 44 V T5, T6, T3, Tj, T4, T9, Te, Th, T1, T2, Ti, Tc, Td, Tb, Tg;
Chris@10 45 V T7, Ta, Tt, Tk, Tr, T8, Ts, Tf, Tx, Tu, To, Tl, Tw, Tv, Tn;
Chris@10 46 V Tm, Tz, Ty, Tp, Tq;
Chris@10 47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 49 Ti = LDW(&(W[0]));
Chris@10 50 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 51 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 52 Tb = LDW(&(W[TWVL * 8]));
Chris@10 53 Tg = LDW(&(W[TWVL * 6]));
Chris@10 54 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 55 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 56 T3 = VFMACONJ(T2, T1);
Chris@10 57 Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1));
Chris@10 58 T4 = LDW(&(W[TWVL * 4]));
Chris@10 59 T9 = LDW(&(W[TWVL * 2]));
Chris@10 60 Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc));
Chris@10 61 Th = VZMULJ(Tg, VFMACONJ(Td, Tc));
Chris@10 62 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
Chris@10 63 Ta = VZMULJ(T9, VFMACONJ(T6, T5));
Chris@10 64 Tt = VADD(Tj, Th);
Chris@10 65 Tk = VSUB(Th, Tj);
Chris@10 66 Tr = VADD(T3, T7);
Chris@10 67 T8 = VSUB(T3, T7);
Chris@10 68 Ts = VADD(Ta, Te);
Chris@10 69 Tf = VSUB(Ta, Te);
Chris@10 70 Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts));
Chris@10 71 Tu = VADD(Ts, Tt);
Chris@10 72 To = VMUL(LDK(KP866025403), VSUB(Tk, Tf));
Chris@10 73 Tl = VADD(Tf, Tk);
Chris@10 74 Tw = VFNMS(LDK(KP500000000), Tu, Tr);
Chris@10 75 Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu)));
Chris@10 76 Tn = VFNMS(LDK(KP500000000), Tl, T8);
Chris@10 77 Tm = VMUL(LDK(KP500000000), VADD(T8, Tl));
Chris@10 78 Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw));
Chris@10 79 Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw)));
Chris@10 80 ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0]));
Chris@10 81 Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn));
Chris@10 82 Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn)));
Chris@10 83 ST(&(Rp[0]), Tm, ms, &(Rp[0]));
Chris@10 84 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
Chris@10 85 ST(&(Rm[0]), Ty, -ms, &(Rm[0]));
Chris@10 86 ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)]));
Chris@10 87 ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0]));
Chris@10 88 }
Chris@10 89 }
Chris@10 90 VLEAVE();
Chris@10 91 }
Chris@10 92
Chris@10 93 static const tw_instr twinstr[] = {
Chris@10 94 VTW(1, 1),
Chris@10 95 VTW(1, 2),
Chris@10 96 VTW(1, 3),
Chris@10 97 VTW(1, 4),
Chris@10 98 VTW(1, 5),
Chris@10 99 {TW_NEXT, VL, 0}
Chris@10 100 };
Chris@10 101
Chris@10 102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {17, 18, 12, 0} };
Chris@10 103
Chris@10 104 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
Chris@10 105 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
Chris@10 106 }
Chris@10 107 #else /* HAVE_FMA */
Chris@10 108
Chris@10 109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
Chris@10 110
Chris@10 111 /*
Chris@10 112 * This function contains 29 FP additions, 20 FP multiplications,
Chris@10 113 * (or, 27 additions, 18 multiplications, 2 fused multiply/add),
Chris@10 114 * 42 stack variables, 3 constants, and 12 memory accesses
Chris@10 115 */
Chris@10 116 #include "hc2cfv.h"
Chris@10 117
Chris@10 118 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@10 119 {
Chris@10 120 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@10 121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@10 122 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@10 123 {
Chris@10 124 INT m;
Chris@10 125 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@10 126 V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2;
Chris@10 127 V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To;
Chris@10 128 V Tt, Ts, TA, Ty, Tz, Tx, TC, TB;
Chris@10 129 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@10 130 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@10 131 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@10 132 Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@10 133 Tf = VCONJ(Te);
Chris@10 134 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@10 135 T7 = VCONJ(T6);
Chris@10 136 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@10 137 T3 = VCONJ(T2);
Chris@10 138 T4 = VADD(T1, T3);
Chris@10 139 T5 = LDW(&(W[TWVL * 4]));
Chris@10 140 T9 = VZMULIJ(T5, VSUB(T7, T8));
Chris@10 141 Ta = VADD(T4, T9);
Chris@10 142 Tu = VSUB(T4, T9);
Chris@10 143 Tj = LDW(&(W[0]));
Chris@10 144 Tk = VZMULIJ(Tj, VSUB(T3, T1));
Chris@10 145 Tl = LDW(&(W[TWVL * 6]));
Chris@10 146 Tm = VZMULJ(Tl, VADD(Tf, Tg));
Chris@10 147 Tn = VADD(Tk, Tm);
Chris@10 148 Tw = VSUB(Tm, Tk);
Chris@10 149 Tb = LDW(&(W[TWVL * 2]));
Chris@10 150 Tc = VZMULJ(Tb, VADD(T7, T8));
Chris@10 151 Td = LDW(&(W[TWVL * 8]));
Chris@10 152 Th = VZMULIJ(Td, VSUB(Tf, Tg));
Chris@10 153 Ti = VADD(Tc, Th);
Chris@10 154 Tv = VSUB(Tc, Th);
Chris@10 155 Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti))));
Chris@10 156 To = VADD(Ti, Tn);
Chris@10 157 Tp = VMUL(LDK(KP500000000), VADD(Ta, To));
Chris@10 158 Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta));
Chris@10 159 ST(&(Rp[0]), Tp, ms, &(Rp[0]));
Chris@10 160 Tt = VCONJ(VADD(Tq, Tr));
Chris@10 161 ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)]));
Chris@10 162 Ts = VSUB(Tq, Tr);
Chris@10 163 ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0]));
Chris@10 164 TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv))));
Chris@10 165 Tx = VADD(Tv, Tw);
Chris@10 166 Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx)));
Chris@10 167 Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu));
Chris@10 168 ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0]));
Chris@10 169 TC = VADD(Tz, TA);
Chris@10 170 ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)]));
Chris@10 171 TB = VCONJ(VSUB(Tz, TA));
Chris@10 172 ST(&(Rm[0]), TB, -ms, &(Rm[0]));
Chris@10 173 }
Chris@10 174 }
Chris@10 175 VLEAVE();
Chris@10 176 }
Chris@10 177
Chris@10 178 static const tw_instr twinstr[] = {
Chris@10 179 VTW(1, 1),
Chris@10 180 VTW(1, 2),
Chris@10 181 VTW(1, 3),
Chris@10 182 VTW(1, 4),
Chris@10 183 VTW(1, 5),
Chris@10 184 {TW_NEXT, VL, 0}
Chris@10 185 };
Chris@10 186
Chris@10 187 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {27, 18, 2, 0} };
Chris@10 188
Chris@10 189 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
Chris@10 190 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
Chris@10 191 }
Chris@10 192 #endif /* HAVE_FMA */