Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21 /* This file was automatically generated --- DO NOT EDIT */
|
Chris@10
|
22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
|
Chris@10
|
23
|
Chris@10
|
24 #include "codelet-rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 #ifdef HAVE_FMA
|
Chris@10
|
27
|
Chris@10
|
28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
|
Chris@10
|
29
|
Chris@10
|
30 /*
|
Chris@10
|
31 * This function contains 29 FP additions, 30 FP multiplications,
|
Chris@10
|
32 * (or, 17 additions, 18 multiplications, 12 fused multiply/add),
|
Chris@10
|
33 * 38 stack variables, 2 constants, and 12 memory accesses
|
Chris@10
|
34 */
|
Chris@10
|
35 #include "hc2cfv.h"
|
Chris@10
|
36
|
Chris@10
|
37 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
38 {
|
Chris@10
|
39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
41 {
|
Chris@10
|
42 INT m;
|
Chris@10
|
43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
|
Chris@10
|
44 V T5, T6, T3, Tj, T4, T9, Te, Th, T1, T2, Ti, Tc, Td, Tb, Tg;
|
Chris@10
|
45 V T7, Ta, Tt, Tk, Tr, T8, Ts, Tf, Tx, Tu, To, Tl, Tw, Tv, Tn;
|
Chris@10
|
46 V Tm, Tz, Ty, Tp, Tq;
|
Chris@10
|
47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
49 Ti = LDW(&(W[0]));
|
Chris@10
|
50 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
51 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
52 Tb = LDW(&(W[TWVL * 8]));
|
Chris@10
|
53 Tg = LDW(&(W[TWVL * 6]));
|
Chris@10
|
54 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
55 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
56 T3 = VFMACONJ(T2, T1);
|
Chris@10
|
57 Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1));
|
Chris@10
|
58 T4 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
59 T9 = LDW(&(W[TWVL * 2]));
|
Chris@10
|
60 Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc));
|
Chris@10
|
61 Th = VZMULJ(Tg, VFMACONJ(Td, Tc));
|
Chris@10
|
62 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
|
Chris@10
|
63 Ta = VZMULJ(T9, VFMACONJ(T6, T5));
|
Chris@10
|
64 Tt = VADD(Tj, Th);
|
Chris@10
|
65 Tk = VSUB(Th, Tj);
|
Chris@10
|
66 Tr = VADD(T3, T7);
|
Chris@10
|
67 T8 = VSUB(T3, T7);
|
Chris@10
|
68 Ts = VADD(Ta, Te);
|
Chris@10
|
69 Tf = VSUB(Ta, Te);
|
Chris@10
|
70 Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts));
|
Chris@10
|
71 Tu = VADD(Ts, Tt);
|
Chris@10
|
72 To = VMUL(LDK(KP866025403), VSUB(Tk, Tf));
|
Chris@10
|
73 Tl = VADD(Tf, Tk);
|
Chris@10
|
74 Tw = VFNMS(LDK(KP500000000), Tu, Tr);
|
Chris@10
|
75 Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu)));
|
Chris@10
|
76 Tn = VFNMS(LDK(KP500000000), Tl, T8);
|
Chris@10
|
77 Tm = VMUL(LDK(KP500000000), VADD(T8, Tl));
|
Chris@10
|
78 Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw));
|
Chris@10
|
79 Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw)));
|
Chris@10
|
80 ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0]));
|
Chris@10
|
81 Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn));
|
Chris@10
|
82 Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn)));
|
Chris@10
|
83 ST(&(Rp[0]), Tm, ms, &(Rp[0]));
|
Chris@10
|
84 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
85 ST(&(Rm[0]), Ty, -ms, &(Rm[0]));
|
Chris@10
|
86 ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
87 ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0]));
|
Chris@10
|
88 }
|
Chris@10
|
89 }
|
Chris@10
|
90 VLEAVE();
|
Chris@10
|
91 }
|
Chris@10
|
92
|
Chris@10
|
93 static const tw_instr twinstr[] = {
|
Chris@10
|
94 VTW(1, 1),
|
Chris@10
|
95 VTW(1, 2),
|
Chris@10
|
96 VTW(1, 3),
|
Chris@10
|
97 VTW(1, 4),
|
Chris@10
|
98 VTW(1, 5),
|
Chris@10
|
99 {TW_NEXT, VL, 0}
|
Chris@10
|
100 };
|
Chris@10
|
101
|
Chris@10
|
102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {17, 18, 12, 0} };
|
Chris@10
|
103
|
Chris@10
|
104 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
|
Chris@10
|
105 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
|
Chris@10
|
106 }
|
Chris@10
|
107 #else /* HAVE_FMA */
|
Chris@10
|
108
|
Chris@10
|
109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
|
Chris@10
|
110
|
Chris@10
|
111 /*
|
Chris@10
|
112 * This function contains 29 FP additions, 20 FP multiplications,
|
Chris@10
|
113 * (or, 27 additions, 18 multiplications, 2 fused multiply/add),
|
Chris@10
|
114 * 42 stack variables, 3 constants, and 12 memory accesses
|
Chris@10
|
115 */
|
Chris@10
|
116 #include "hc2cfv.h"
|
Chris@10
|
117
|
Chris@10
|
118 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
Chris@10
|
119 {
|
Chris@10
|
120 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
Chris@10
|
121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
Chris@10
|
122 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
Chris@10
|
123 {
|
Chris@10
|
124 INT m;
|
Chris@10
|
125 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
|
Chris@10
|
126 V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2;
|
Chris@10
|
127 V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To;
|
Chris@10
|
128 V Tt, Ts, TA, Ty, Tz, Tx, TC, TB;
|
Chris@10
|
129 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
Chris@10
|
130 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
131 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
Chris@10
|
132 Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
Chris@10
|
133 Tf = VCONJ(Te);
|
Chris@10
|
134 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
135 T7 = VCONJ(T6);
|
Chris@10
|
136 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
Chris@10
|
137 T3 = VCONJ(T2);
|
Chris@10
|
138 T4 = VADD(T1, T3);
|
Chris@10
|
139 T5 = LDW(&(W[TWVL * 4]));
|
Chris@10
|
140 T9 = VZMULIJ(T5, VSUB(T7, T8));
|
Chris@10
|
141 Ta = VADD(T4, T9);
|
Chris@10
|
142 Tu = VSUB(T4, T9);
|
Chris@10
|
143 Tj = LDW(&(W[0]));
|
Chris@10
|
144 Tk = VZMULIJ(Tj, VSUB(T3, T1));
|
Chris@10
|
145 Tl = LDW(&(W[TWVL * 6]));
|
Chris@10
|
146 Tm = VZMULJ(Tl, VADD(Tf, Tg));
|
Chris@10
|
147 Tn = VADD(Tk, Tm);
|
Chris@10
|
148 Tw = VSUB(Tm, Tk);
|
Chris@10
|
149 Tb = LDW(&(W[TWVL * 2]));
|
Chris@10
|
150 Tc = VZMULJ(Tb, VADD(T7, T8));
|
Chris@10
|
151 Td = LDW(&(W[TWVL * 8]));
|
Chris@10
|
152 Th = VZMULIJ(Td, VSUB(Tf, Tg));
|
Chris@10
|
153 Ti = VADD(Tc, Th);
|
Chris@10
|
154 Tv = VSUB(Tc, Th);
|
Chris@10
|
155 Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti))));
|
Chris@10
|
156 To = VADD(Ti, Tn);
|
Chris@10
|
157 Tp = VMUL(LDK(KP500000000), VADD(Ta, To));
|
Chris@10
|
158 Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta));
|
Chris@10
|
159 ST(&(Rp[0]), Tp, ms, &(Rp[0]));
|
Chris@10
|
160 Tt = VCONJ(VADD(Tq, Tr));
|
Chris@10
|
161 ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)]));
|
Chris@10
|
162 Ts = VSUB(Tq, Tr);
|
Chris@10
|
163 ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0]));
|
Chris@10
|
164 TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv))));
|
Chris@10
|
165 Tx = VADD(Tv, Tw);
|
Chris@10
|
166 Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx)));
|
Chris@10
|
167 Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu));
|
Chris@10
|
168 ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0]));
|
Chris@10
|
169 TC = VADD(Tz, TA);
|
Chris@10
|
170 ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)]));
|
Chris@10
|
171 TB = VCONJ(VSUB(Tz, TA));
|
Chris@10
|
172 ST(&(Rm[0]), TB, -ms, &(Rm[0]));
|
Chris@10
|
173 }
|
Chris@10
|
174 }
|
Chris@10
|
175 VLEAVE();
|
Chris@10
|
176 }
|
Chris@10
|
177
|
Chris@10
|
178 static const tw_instr twinstr[] = {
|
Chris@10
|
179 VTW(1, 1),
|
Chris@10
|
180 VTW(1, 2),
|
Chris@10
|
181 VTW(1, 3),
|
Chris@10
|
182 VTW(1, 4),
|
Chris@10
|
183 VTW(1, 5),
|
Chris@10
|
184 {TW_NEXT, VL, 0}
|
Chris@10
|
185 };
|
Chris@10
|
186
|
Chris@10
|
187 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {27, 18, 2, 0} };
|
Chris@10
|
188
|
Chris@10
|
189 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
|
Chris@10
|
190 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
|
Chris@10
|
191 }
|
Chris@10
|
192 #endif /* HAVE_FMA */
|